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POREWORD 
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described in Part III. 
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ABSTRACT 

A general small-deflection theory governing the elastostatlc extension and 
flexure of thin laminated anisotropic shells and plates is fonrnilated. The plate 
or shell structure may be composed of an arbitrary number of bonded layers, each 
of which may possess different thickness, orientation, and/or orthotropic elastic 
properties.  Donnell-type equations for cylindrical shells and Poisson-Kirchhoff 
plate equations are explicitly discussed, along with procedures for detemlnlng 
stresses in an individual lamina. Several methods of solution of the system of 
equations governing extension and flexure of plates are discussed and illustrated 
with examples. Optimization of laminate configuration is treated briefly. The 
results of a limited number of crack propagation tests of flat plate aluminum 
foil laminates in uniaxial tension are presented. 
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iim?oDucnoN 

Analysis and prediction of the mechanical behavior of structural laminates, 
with a view toward possible application in aircraft or missile structures is con- 
tingent upon obtaining basic information involving: (l) detemination of mechanical 
properties of materials, (2) developnent of appropriate stress analysis procedures, 
and (3) establishment of suitable criteria for strength analysis. 

This report describes a theory of behavior, for flat plate and cylindrical 
shell structures, appropriate to bonded laminate-type construction. The possibility 
of orthotropic elastic properties and arbitrary orientation of elastic axes of 
individual laminas is accounted for. The theory may be extended to include aniso- 
tropic layers with only slight modification. Preliminary experimental results of 
crack initiation and propagation studies for aluminum foil laminates in uniaxlal 
tension are presented. 

Manuscript released by the authors, March 31* 196l, for publication as an ARL 
Technical Documentary Report. 



PART I: THEORY OF THIN AMISOTROPIC PLATES AMD SHELLS 

INTRODUCTION 

A general theory for the flexural and extenslonal behavior of thin laminated 
anisotropic shells is developed in Fart I. The theory is formulated within the 
framework of the classical shell theory predicated on the Kirchhoff-Love hypothesis. 
In this theory the effect of transverse shear deformation and transverse normal 
stress is neglected. Love's first approximation is employed in the derivation. 
The procedures in developing these governing equations are as follows. The  stress- 
strain relations for an individual lamina in generalized plane stress are estab- 
lished. A brief discussion on surface geometry pertinent to the derivation is 
given. Stress-resultants and stress-couples are fomulated by integration of the 
components of stress across the thickness of the shell. The condition of equili- 
brium is then imposed upon the shell. The  additional equation for the compatibility 
of the reference surface is given. Boundary conditions associated with the boundary 
value problem are discussed. This system of general equations is then specialized 
for cylindrical shells and flat plates. 

Much of the early work in laminated shells was devoted to symmetric sandwich- 
type construction of Isotropie materials. A theory of laminated orthotropic shells 
was developed by S. A. Mbartsumyan (l), who restricted the elastic axes of all the 
lajninas to run parallel to the coordinate axes. Other authors have studied pro- 
blems which are governed by the same type of differential equations as for laminated 
plates and shells. Their work will be cited. Other methods of solution, such as 
pertubation and iteration, are also discussed. 

1.  GENERAL THEORY OF TEEN LAMINATED ANISOOSOPIC SSEUS 

STRESS-STRAIN RELATIONS FOR A LAMINA IN GENERALIZED PLANE STRESS 

To study laminate systems, it is first necessary to establish the stress- 
strain relations for a single lamina. Consider an individual lamina whose middle 
surface lies in the plane z ■ 0, with the axes 1 and 2 forming a right-handed 
orthogonal coordinate system.  The strain-stress relations for a completely general 
anisotropic material In matrix notation assumes the foim: 

12 

11 

12 

'16 

12 

22 

S26 

'16 

326 

366 

al ] 

C2 

'12 

(1.1) 

In Eq (l. 1), (oi, 02, "«12) and (Cj., ^2,  0^12) refer tc the average noimal and 
shearing stresses and strains, respectively, over the lamina thickness. Due to 
the symmetry of the compliance matrix SJM, there are only six independent constants 
In generalized plane stress for an anisotropic material. If the material is ortho- 
tropic and the principal elastic axes coincide with the coordinate axes, the 
strain-stress relations reduce to the following: 



tl 

Uzt 12 

Sll  S12 

S12  S22 

2S 66 12 

(1-2) 

The matrix of coefficients S-^j in Eq (1.2) is related to the conventional elastic 
moduli and Poisson's ratio in the following manner: 

Sll = E^ 

S22 " E^ 

=  2^„  1^ 
S12 " S21 = ' B!  ' " E^ 

,   , 1 
s66  G 

(1-3) 

It is seen that the elastic properties of an orthotropic lamina are defined by four 
independent constants.  The factors 2 and 1/2 in Eq (1.2) are inserted so as to 
make the matrix a tensor in order that tensorial transformations can be carried out 
in the sequel.  Since most of the further work is devoted to orthotropic materials, 
subsequent discussion is restricted to orthotropic stress-strain relations. For 
convenience of application, it is frequently necessary to express Sq (1.2) in 
inverse form, i.e., as a stress-strain relation.  Inversion of Eq (1.2) gives: 

where 

[ öl 

0
2 
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Ci2  C22 
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%»  = 
11 
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Sll S22  "12 i  " 

(1.5) 

C12 = C21 ~ 
12 ^2^1 

Sll S22 " S12 
v.i> 

\v2 
^1^2 



^66 '66 
= G (1.5) 

S-ERBSS-SIRAIH RELATI0M3 FOR AN ORTHOTOOPIC 
LAMINA REFERRED TO ARBITRARY AXES 

In developing the theory associated with laminates composed of individual 
lamlnas in which the elastic axes are oriented at various angles relative to the 
major axis of the laminate proper, it is necessary to express the stress-strain 
relations for an individual lamina referred to orthogonal axes making an arbitrary 
angle relative to the elastic axes of the lamina. Referring to Figure 1.1, the 
elastic axes 1,2,  of the lamina are rotated through a positive angle 0 relative to 
the arbitrary reference axes o., ß. 

Figure 1.1 

It is desired to express the stress-strain equations with respect to axes a,  ß. 
If the desired equations take the foim 

/              % 
0a 

aß 
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Taß 
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20, 66 
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l/#, aß 

(1.6) 

then the problem is to express the C±j  matrix in terms of the O^j matrix from 
Eq il.k)  and functions of the angle ©. This can be acccmpllshed by utilizing 
appropriate transformations for stress and strain matrices as follows:  It is 
easily verified that 



J66 366 
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STRESS-STRAIN RELATIOMS FOR AN ORTHOIROPIC 
LAMINA REFERRED TO ARBIIEARY AXES 

In developing the theory associated with laminates composed of individual 
lam Inas in which the elastic axes are oriented at various angles relative to the 
major axis of the laminate proper, it Is necessary to express the stress-strain 
relations for an individual lamina referred to orthogonal axes making an arbitrary 
angle relative to the elastic axes of the lamina. Referring to Figure 1.1, the 
elastic axes 1,2, of the lamina are rotated through a positive angle 0  relative to 
the arbitrary reference axes a, ß. 

Figure 1.1 

It Is desired to express the stress-strain equations with respect to axes c, p. 
If the desired equations take the fom 
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ca 

aß 
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Taß 

'11 

'12 

'12 

■'22 

'16  ^26 

2C 16 

2C 26 

2C 66 

a 

i/stf. aß 

(1.6) 

then the problem is to express the C±^  matrix in teims of the CJM matrix from 
iiq (l.U) and functions of the angle Ö. This can be accomplished by utilizing 
appropriate transfoimations for stress and strain matrices as follows:  It is 
easily verified that 
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^1' »                       ^ «a 

€2 - T €e 
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where the matrix T is given by 

T 
^   * 

2 Ä cos 9 sin2 e 2sin 9 cos 9 

sin2 9 
2 

cos e - 2sin 9 cos 9 

- sin Ö cos e sin 9 cos 9 2      2 
cos 9 - sin 9 

From Eq (l.^), (l.?). and (1.8) there results 
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aß 

(f1   ( c)(   A 
'a 

V2* aß 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

vhere [ T j ~ denotes the inverse of [T] . Comparing Eq (1.6) and (l. 10) gives 

[c]  =  (T]   [ C  )[T] (1.11) 

Performing the matrix operations indicated hy Eq. (l. 11) leads to the following 
expressions for the elements of the  C  matrix. 



C^ = CI;L COS 9 +  2^Ci2+ 2C66^ Sin2 9 COs2 e + C22 Sin  e 

— 4 2     2 4 
C22 ' Cll Sin ö + 2^C12+ 2C66^ Sin e COS e + C22 C08 e 

C66 = (0^+ C22- 20^- 2C66) sin
2 9  cos2 9 + Cgg (sin d + cos 6) 

— 2     2 4      4 
C^ ■ (0,,+ C - ^gg) sin 6 cos 9 + C^ (sin 9 + cos 9) 

C.c; ■ (C,,- C1C3- 2C^)  sin 9 cos3 9 + (C.0 - C00+ 2C„) sin3 9 cos 9 

(1.02) 

'Iß " v*ll v'12" ^66; '12  v'22 ^66> 

C„A = (C,.- C10- 20^) sin
3 9 cos 9 + (C,_- C-^ 2C„)  sin 9 cos3 9 '26  ^11" u12 ^66 12 ^22 "66' 

In the preceding equations, the elastic constants for stress-strain relations 
referred to arbitrary axes have been expressed in terns of the four independent 
orthotropic constants and functions of the angle 9. 

It is convenient in application to deal with the conventional elastic moduli 
Ei, Eg, G and Poisson's ratios Vn, 2^2 instead of the elastic constants Cij. Ihls 
can easily be acconrpllshed by utilizing Eq (l.5)> however, to simplify the final 
expressions for the general relationships, let the following definitions be 
introduced. 

El ■ E 

E2 = kE 

*1 = *> 

*2 = ka/ 

n XE 

where k and X are 

arbitrary parameters (1.13) 

i - ka^ 

The four independent parameters which describe the material properties are now 
E, 3/ , k, and X. Substituting Eq (1.13) into Eq (1.5) and in turn into Eq (1.22) 
gives: 
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ii    i-ka/' 
4 4 # 2 2 

cos    9 + k sin    9 + {2kV + 4x)  sin    9 COB    9 (LHO 
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ü26 = 
ij 
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1: cos    Ö + sin    9 +  (2kV + hx)  sin2 0 cos2 0 

X  (sin    9 - cos    9)    + (l - 21iZ> + k)  sin    9 cos^ 9 ■J 
(l + k - hx)  sin2 9 cos2 9 + kXJ (sin    9 + cos2*- 9)1       (l.l^) 

•' 

(kV-  1 + 2X.)  sin 9 cos3 9 -  (kV- k + 2x) sin3 9 cos 9 

(kV-  1 + 2X)  sin3 9 cos 9 -  (k*» - k + 2x)  sin 9 cos3 9 ■1 
SURFACE OaOMSORy OF SHELIfi 

Let a and ß be orthogonal curvilinear coordinates which describe the surface 
whose cartesian coordinates are given by the equations: 

X = X (a, ß) 

Y « Y (a, ß) 

(a, ß) 

(1.15) 

.j — ^ 

The line element on the undefomed svirface is 

2        2      2        2      2 
ds    = A   da    + B   dß (1.16) 

where A and B are the surface metric coefficients defined by 

A
2
 = (x^)2 + (Y,a)2 + {z,ar 

B2 =  (X,ß)2 +  (Y,ß)2 +(^ß)2 

(1.17) 

The coi.Tna in the subscript denotes partial differentiation.     The principal radii 
of curvature R^ and R2 are related to the metric coefficients of the surface by 
the equations of Gauss and Codazzi: 

/ 2.)      + (—£.) K  A ''a.      K  B J'ß   '  R,R. 
A3 = 0 (1.13) 
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(1-)^ -w^ J      (I-).. - ^ (1.19) 

Let the variables a, ß, z be the orthogonal curvilinear coordinates of the 
space surrounding the surface.  The line element in this case is: 

ds2 = A2 (1 + |-)2 cb2 + B2 (1 + |-)2 dß2 + dz2 (1.20) 
Rl R2 

ASSUMPTIONS IN THE CLASSICAL THEORY OF SHELIS 

The following assumptions (2) are made in the classical theory of shells to 
simplify the mathematical model. 

In the analysis of beams, the assumption for displacements is that plane 
sections remain plane before and after deformation.  This notion was extended to 
plates by Kirchhoff and to shells by Love. This assumption, as interpreted for 
plates and shells, states that nomals to the undefoimed surface remain normal to 
the deformed surface and suffer no extension. 

Another assumption in the classical shell theory is that the thickness of 
the shell is small in comparison to the lateral dimensions. As a consequence, the 

quantities 5- and =- are small compared to unity and the variation of the radii of Kl   K2 
curvature over the shell thickness is neglected. 

The component of stress normal to the reference surface is small in comparison 
to the other components of stress. This assumption stipulates a state of generaliz- 
ed plane stress. 

Also the strains and displacements of second or higher order are neglected 
in comparison to their first order terms in the classical theory. 

THE DISPLACEMENT VECTOR 

Quantitatively, the Kirchhoff-Love hypothesis implies that the components 
of the displacement vector in orthogonal curvilinear coordinates are: 

w,   u 
u (a, ß, z) = uo (a, ß) - (-^ - ^) z 

w,R  V 
v (a, ß, z) = vo (a, ß) - (-^ - R2) z (1.21) 

w (a, ß, z) ■ wo (a, ß) 



In the above equations u0, v0, and v0 are the displacement conrponents of a point 
on an arbitrary reference surface. 

STMIIv-DISPLACSr-rSKT 3QUATI0US 

The strain-displacement equations for the linear theory of shells (also known 
as Love's first approximation) are: 

^ - ^o " ^1 

€ß = ^20 " ^2 
(l-22) 

Vaß = »120 " 22 *12 

vrhere £±o,   G-20)    *120 are the reference surface strains andTC^ Xg^ /^12 
are the chances of curvature and the twist of the surface. The  reference surface 
strains are given by the same expressions for the middle surface strains in the 
theory of single-layer shells.  These expressions are given, for example, by 
Ilovozhilov (3). 

.      v 
ei0^ A Uo,a  AB A,ß •A1 

^120 = J vo,a + I uo,ß - h (uo A'ß + v
0 ^ 

Tlie expressions for the changes of curvature    which are also given by Ilovozhilov 
(3) are: 

^1 " A KT'a " B>'a      AB A,ß  ^B V,ß " RJ 

u ., -, v 
_c 

ß " v 
(1.24) 

^2 " B (B W'ß " R^'ß + AB B'CC (Ä ^a " R^ 

These e:qpressions ignore the extensional effects on the changes of curvi- 
ture.  According to Ilovozhilov (3), the effects are comparable to other effects 
which are neglected in this theory.  The expressions which include extensional 
effects are given, for example, by Vlasov (h).    For certain types of shells it 
appears that for computational purposes the expressions which include the exten- 
sional effects are more convenient to work with. 



*12 " AB ^w'aß " Ä A,ß w'a ' B B,a w,ß^ 

1/1 0 A     ^      i_ ^i o p    \ 
" RT ^B Uo,ß " AB A'ß;  " R2 ^A Vo,a " AB *0; 

(1.24) 

SORESS-RESULTAMTS AMD STRESS-COUPLES 

If the state of generalized plane stress Is assumed to exist In the k-th 
lamina of the shell, the stress-strain relation for this condition Is given hy 
Eq (1.6).    Ulis equation rewritten for the "k-th" lamina is 

•0
(*,' 

°,w s 

P    (k)     F    (k)     =    (k) 
Cll C12 Ll6 

K      (k)        F      (k)        r;     (k) 
'12 '22 '26 

*    (k)      ^    (k)      *   (k) 
'16 '26 '66 

a 

'aß 

(1.25) 

nie constants C^ 
stituting the va' 

(k) can ^ foun(i for each lamina from Eq (l. 12) or (l. it) hy sub- 
lue of ©k appropriate to the particular lamina "k." 

Stress-resultants and stress-couples can be fomulated in terms of the dis- 
placements by Integrating Eq (1.25) across each lamina and sunming the resulting 
expressions over n layers. 

^   Vl ^ (1.26) 

ksl Vi 
dz 

^ 

(1.27) 

k»l   h k-1 

According to Love's first approximation,   the quantities =- and =- are neglected. 

Therefore %ß ■ Mßa    and   Jfeß ■ ^fea 

R2 
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ss A12 A22 ^6 ^20 - Dll D2| D25 y.2 i 

1 vj , A16 
A26 

A66j * 120 D^ 
D2g D6r 12^J 

(1-28) 

M a Dl! 
Dll 

Dl^] 1    «00 1 Dll D12 D2B\ 
Xll 

Mß 
s Dl? D

2I 
D

2d 1       0 - D12 »22 D26 ^2 

i   V| Dl? D2g D6?j 1    ^120] Dlß D26 D66 2X12 

(1.29) 

where the A±',,  D±^,  and B* *  are defined as liJ'   "ij ij 

Aij ■ y %w (^ - vi) 
k= \ 

D*. , - i >   5
1J

(k) ^ - 4.J 
n 

(1-30) 

D..=i     V       C..W 
ij ij ^ " ^-l) 

k=l 

EQUATIONS OF EQUILIBRIUM AMD COMPATIBILITY 

The five equations of equilibrium for a shell element and the compatibility 
equation for the in-plane strain components of the reference surface constitute 
the deteminative system for this problem.    These equations referred to the 
reference surface are: 

AB (V'a + (AV'ß + Nae % " Nß B'a + SH + ^ ^ 0 

AB (B^),a + (Mß),ß 
+ Naß B,a -  Na A,ß + 2£ Qp + AB qp - 0 

N N„ 

f^'a + (AV'ß + Hxß A'ß " M
ß 

B'a " ^ S. " 0 

11 

(1.31) 



%1      %2 ^ 1 

P   " AB^ - 0 (1.31) 

B j^   A   L     ^20, 

h   [i {A610,ß + A'ß  ( €10 "   €20)  - I  ^120,a " B'a ^ 12o]\, ■ 0 
ß 

(1-32) 

In the above equations q^,   q«, and qz are the external loads on the shell; ^ 
and Qß are the transverse shearing forces, and all other symbols have been 
previously defined. 

DOUEDABY COimiTIOKS 

Associated with the system of iSq. (l. 3l) and (1.32) are four boundary condi- 
tions to be satisfied on the contour o;;' the shell.  Ihese boundary conditions 
arise from the physical requirements of support along the shell contour,  impres- 
sions of these conditions may be conveniently obtained by variaticnal methods. 
Such an analysis leads to boundary conditions uhich are identical to these of 
the usual isotropic shell.  However, it should be emphasized that in the present 
case all boundary forces and displacenents are referred to the reference surface. 
If, in the physical problem, the boundary forces and displaceaents are given for 
some other surface, an equivalent reference surface system must be calculated. 

The boundary conditions for shells are sumarized in the following table. 

I II 

Force Boundary Conditions Displacement Boundary Conditions 

1 (^ - ÜJ n   n (u - Ü ) v n   n 

2 (N  + n* - H    nt) 
*• nt  R    nt  R ; 

n        n K - zt] 

3 ("n " V 
n      n 

k (\ + rKnt,t-V (w - w) 

(1-33) 
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where 
Nn - nonnal force 

Nt - ln-snrface shearing force 

QJJ - transverse shearing force 

MJJ - bending moment 

Mdt - twisting moment 

Vn - effective shear given Toy 

n  Ti  A  nt, t 

UJJ - noimal displacement 

ut - tangential displacement 

w - deflection nonnal to surface 

Y - angle of rotation in the normal direction given hy 

1 = A W,n " R 
n      n 

An - metric coefficient associated with the contour. 

Bars over the quantities signify that they are the prescribed values at the 
boundaries. 

In each of the four conditions, either the barred quantity in column I or II 
must be prescribed. For that force or displacement which is prescribed, the 
bracketed quantity must vanish. Ulis means that the unbarred quantity (that force 
or displacement from the interior of the shell) must take on the prescribed value 
on the boundary. 

Some examples of boundary conditions are: 

Free edge: 

N    = 0 , 
n Hnt Rn 

> M    • 
n 0 , 

Hinged edge with fixed support: 

Mn = 0, u^ 0 , ut = 0 , w » 0 

Hinged edge with support free to move in the nonnal 

Mn=0, w = 0 , \m 0 , Hn = 0 

1 
nt, t Si + A"M — -0 

n 

13 



Claraped edge: 

1^  =  0, U.   »  0   , W=0, 
n n 

The theory developed need not be restricted to shells comprised of ortho- 
tropic laminas. Because of possible rotation of the orthotropic elastic axes, 
the equations already involve six Cj*, which, however, are not independent for 
a shell of orthotropic_laminas. In the most general case, there can exist six 
independent constants C^j. It is then only necessary to regard these six con- 
stants as completely independent for a theory which involves a completely aniso- 
tropic material. 

Ik 
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2.  DONNELL-TXPE EQUATIONS FOR LAMIHATED ANISOTROPIC CYLIMDRICAL SBELIS 

In this section, the general equations from the preceding section are 
specialized for a circular cylindrical shell using the Donnell approximations, 
which neglect certain terms in the changes of curvature and in the equilibrium 
equations. The Justification for neglecting these tems can be argued by con- 
sideration of the configuration of the shell and the geometry of defoimation. 
The Donnell Approximations simplify the mathematical model considerably and the 
results obtained from this theory, as discussed in connection with Isotropie 
cylindrical shells by Kempner (5), agree closely to the results obtained from a 
more exact theorv in most cases of technical interest. 

DERIVATION OF THE GOVERNIMG DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

The cartesian coordinates which describe a circular cylinder of radius a 
are: 

X = a cos'f 

Y = a sinf (2.1) 

Z = x 

Eq (2.1) has the form of Eq (l.15) with the variables a = x and ß = ^ . The 
metric coefficients can be computed from Eq (l.17). The square of the line 
element in this system of curvilinear coordinates is then 

ds2 = dx2 + a2 d^2 (2.2) 

The strains of the reference surface given by Eq (1.23) become for a 
cylindrical shell (recalling that RJL =0O) 

€10 = uo,x 

«20 "K,., +l (2-3) 

^120 " Vo,x + i %* 

Donnell (6) proposed the following expressions for the changes in curvature 
by neglecting certain terms in the general expressions. 

%!= w, xx 

^2 " "T W'W (2A) 

a 

X  -1 = — w. 
12  a 'xi^ 
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Stress-resultants and stress-cotiples are foirnulated eis described in the 
previous section. These expressions for a cylindrical shell are: 

1         « 

Nx All A12 V Uo,x 
Dll Dl5 Dl? w'xx 

\ = A12 ^2 ^6 
iv   +2 a o,^  a 

- D3l D2l D2? a 

A26 ^6 ^, 
v  + -u 
o,x a o,y 

Dl? D2? D6^ a^'x^ J 

(2.5) 

M 
X 

,Dll D2l Dl? u 
o,x 'Dll 

Da2 D16 w'xx 

M, = Dll 
D
2I D2^ a o^  a 

D12 D22 D26 a 

.D^ 
D2g D6* 

v  + -iu 
o,x a o,y 

D16 D26 
D66 a^'x^ 

(2.6) 

The five equilibrium equations, which are also modified by a Donne 11 approxi- 
mation, supplemented by the compatibility condition for the deformed reference 
surface of the shell constitute the deteminative system of equations for the 
problem. These equations are: 

N        + - N        .    = 0 x,x     a   x^,f 

%,x + 5Vf   =0 

Sc,x + i QV,f    + i NV  + ^ - 0 (2.7) 

M        +-M. -Q=0 x,x      a.   xif^p x 

M + - M^ .^    -   Qt«  = 0 xif ,x     a    y,V ▼ 

iw     +g        + L. c 1V 
a    'xx 20,xx       2      10,^        a " 120,xiP 

GL 

(2.8) 

In the equilibrium Eq (2.7), the only external load which is considered is the 
normal load qz. Q^ and Q^ appearing in the above equations can be eliminated by 

16 



appropriate differentiation and subsequent addition of the fourth and fifth 
equilibrium equations using the third equilibrium equation as an identity. 

x,xx  a X(f,xip   2  f/ff 
N« 

+ % (2.9) 

It is convenient to treat the transverse deflection v and the stress-resultants 
Ng; %> N^ as the primary dependent variables of the problem. Equations (2.5) 
and (^.6) x'evrrltten in abbreviated matrix notation are: 

N - A€ - D TC o      "^ 

M-D € -DX 

(2.5a) 

(2.6a) 

Inversion of Eq (2.5a) gives; 

€ a BN + BD 
^•o (2.10) 

where B is the inverse of A. 

B - A 

Bll  B12  Bl6 

B12  B22  B26 

Bli6  B26  B66 

(2.11) 

The components of the symmetric B matrix are: 

^ 

^^ " ^6 Al£A26 " A12A66 

^^66 " Al6 

A12A26 ' "SJS^ 

kl^ll£ "  AilA26 

^1^ " ^2 

where «*& is the determinant 

^  A12  Alß 

A22     ^      A^S 

Al5  A26  A66 

17 



Sutetituting Eq (2.10)  into Eq (2.6a) gives; 

M - bN + d% 

where b = D B and d = D BD    - D. 

The components of matrix b are: 

(2.12) 

bn    bi2    bi6 

b21      b22      b26 

b6l     b62     b66 

(2.13) 

D11B11 + D12Bi2 + D16B16 ' D11B12 + D12B22 + D16B26' DllBl£ + D:LlB26+Dl6B66 

^11 + D22B12 + DiBl£ ' D*22B22 + D22B22 + D^B26' DiBl6 + DLB26+DiB66 

Dl6Bll + D26B12 + D66Bi6 '    Dl6B12 + DiB22 + D66B26'    »l^lB + Di B26+D66B66 

It should be noted that b is not symmetric,   i.e.  b^j ^ bji.     The BD   matrix 
appearing in Eq (2. ID) is defined as V,  the transpose of b.    The components of 
the symmetric d matrix are: 

d 

dll     d12      dl6 

d32      ^2      ^26 

dl6     ^26     d66 

(2.14) 

where 

dll " DSB11 + 2DIlDl2BI2 + 2DÄBI6 + Dl22B22 + ^l&te + D^2B66 " Dll 

dI2 ■ DnD12Bll + Dl22B12 + DI2D16BI6 + DIl D22BI2 + Dl2D22B22 

+ D>22B26 + DUDiBl£ + ^^6 + D^4B66 " DI2 

Iß 



di6 - DnD^Bii + D>l6Bi2 + ^ + DiiD^Bn2 + Dl2D26B22 

+ Dl6DJ6B26 + DIiD66Biß + t&le** + ^ee^e " Di6 

^2 • 42B11 + 24D22Ba2 + 2Dl2D^Blß + D222B22 + 2D22DiB26 + ^66 " D22 

^6 - D ABll + Dl6D22Bl2 + D16D^B16 + Dl2D26B12 + ^i8« 

+ D
26

2B
26 

+ 4D66B16 + D22D66B26 + DiD66B66 " D26 

^6 ' D
^

2B
II 

+ ^Ä + 2D^D66Bi6 + D
26

2B
22 

+ 2D26D66B26 + D
^

2B
66 " D66 

^y way of recapitulation,  Eq (2.10) and (2.12) are restated in terns of the 
components of the property matrices defined previously. 

€10 = uo,x * BllHx + B12\   + BlßNxV   + Hl^xx + bi2 h w'fV     + 2bl6 5 v' Xtf 

1 
a* «20 - i Vo,V    + • * B12Nx + B22Nf   + B26V   + b21W'»c + b22 J?"* 

+ 2b26SW'xy (2.10a) 

^120 = Vo,x + 5 Uo,f   * BlßNx + B26V B66Nx/ ^lv'xx + b62 h *"* 

a        'xtf 

Mx - bllN
X 

+ b12NV   + bl6Nxf   + dUW'xx + ^ W^     +-Tä W'x9 
(2.12a) 

Mf   " b21Nx + b22Nf   + b26Nxf   + ^^xx *■¥"'**     +-Tä w'xV 

^   = b6lNx + ^2^   + b66Nxf  + dl6w'xx + ¥ W'W    + ^ w'xf 
M . = b xr 

Introduction of the Airy stress function U defined in cylindrical coordinates 
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T=V 

Hx-^^  ,   Nf-u,xx,   ^"l^nf ^-^ 

which identically satisfie s the in-eurface equilibrium equations, the first 
two equations of Eq (2.7),  reduces the governing system to two primary dependent 
variables. Substitution of Eq (2.10) into Eq (2.8) using this definition of the 
Airy stress function gives : 

B     u .f^0 ■  (2BI2 + B66) , _^6V 
^22 u'xxxx       a      "'fflocif 2 u'xxff 03      'x*t*f 

Bn (2^? ' ""iß) 
+  ^U,fW     + ^ ^^ ^        62 a    ^   ^^ (2.16) 

,   ^11 + b22 - 22Ml Tr * (2b6l - b26) v +
b21w 

-   - W, =   0 a    'xx 

Substitution of Eq (2.12) into Eq (2.9) again using Eq (2.15) gives: 

12    'xxxx a 'xxxif 2 'xxiftp 

+   2b6l-b26   Vt^    ^U,^^    * du v,^^ +-iä v,^^ 

d„ 2(d^2^) ^ ^ 

- - U,       —q 

Equations (2.l6) and (2.17) constitute the generalization of the Donnell 
equations of cylindrical shells to Include the effect of anisotropy of the 
individual laminas. The presence of both dependent variables Indicates coupling 
between membrane and bending effects. 

The boundary conditions are given 'by Eq (1.33)- They are summarized below 
to ccnrplete the fonnulation of the cylindrical shell problem. 

20 



I II 

Force Boundary Conditions Displacement Boundary Cond. 

1 ("n - V (un " V 

2 
n                     n K " V 

3 (Mn - MJ 
X    '*     Rn      1' 

k ^n+rMnt,t-V (w- w) 

(2.18) 

where 

Nn - normal force 

Nt - in-surface shearing force 

QQ - transverse shearing force 

1^ - bending moment 

Kj. - twisting moment 

Vn - effective shear given by 

n  Ti  A  nt, t 
n   ' 

UJJ - nozmal displacement 

Oj. - tangential displacement 

v - deflection noimal to surface 

t- angle of rotation in the normal direction given by Y= T" u   Un 

'n  R. 

Ajj - metric coefficient associated with the contour. 

Bars over the quantities signify that they are the prescribed values at the 
boundaries. 

Since the governing differential equations involve U and w, the boundary 
conditions must be expressed in terms of these variables in a given problem. 
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DETERMIMTION OF STRESSES IN AN INDIVIDUAL LAMINA AND 
INTEB-LAMINAR SHEAR SOEESSES 

The stresses in the "k-th" lamina of a shell are given Toy Eq (1.6).     They 
can "be written in matrix foim xising the primary dependent variables U aad w hy 
substituting Eq (2.10) into Eq (1.22) and in turn into Eq (1.6).    The expression 
for stresses in matrix notation then 'becomes: 

where 

and 

T^ N + (t(iO 

(k) 

:C<k>)X zC 

T (k) 
xip 

T(k) . ^k) B 

(2.19) 

„(k) 

P(k) 
■■ll 

P(k) 
L21 

"61 

(k)     T (k) 
Tl5 12 

(k)      - (k) 
T26 '•22 

(k)      m (k) 
^62 

(k) 
L66 

M     ^(k)     ^(k) M      /s(k)     ^(k) 
cli B11^12 ^^iß Bl6 '    cll ^^^ ^^lö B26 ' 

rW*   ^(k)^   4.ö(k) M*    4?(k)w   ^(k) 

M     ^(k)     ^(k)^ 
cll Bi6+Ca2 ^^Iß B66 

r(k)«  ^k),,  ^k), 
C]2 Bll+C22 B12+C26 Bl6 '     CI2 B12+C22 B22+C26 B26 *     C32 Bl£"K322 ^"^26 B66 

W*^***®** °i£ ha^ä« ^^^e "^6 * *7>(1?)B^+C>^'I p\kj_   j^^ky^j    jSvkJ^ 
Cl£ Blß+C26 ^^66 B66 

4 

(2.20) 

and 
.Ck) = n(k) 

tw. 

(k) 
n t12 

t(k)l 
16 

(k) 
21 t(k) tCk) 

26 

(k) 
61 t<k) 

^2 ^6   1 
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cOOb   +ü(k)      +ü(k) M      +ü(k)        ^(k) ^k)b    +p(k)h    +n(k)h 
011 bll C12 b12 C16  bl6  '     Cll t21C12 b22+Cl6 b26 J     Cll ^I^IS b62+Cl6 b( 

C(k)b +C(k)b +C(k)b     C(k)b +C(k)b +C(k)b C12 Dll+C22 b12+C26 bl6 '  C12 b21 C22 b22+C26 b26 

'66 

C12 b6l+C22 b62+C26 b66 

c(k)b +c(k)  jKk)     c(k)  +c(k)b +5(k)     ^(k)  ^(k)  ^(k) 
Cl6 bil c26 bl2+C66 bl6 ' C

1J6 
b2l c26 b22+C66 b26 ' Cl£ b6l^:26 ^^öö b66 

(k)     (k) It shou-l-l be noted that T   and t   are unsymmetric.  The stresses written 
explicitly are; 

T (k) T (k) 

a(k)=^-u,„„  H-T^U,  - !3|_ U, .. * (t, k) - ZC <k>) w, x      2   'TT    12   'xx    a   'xif    11     11 '  *xx 

(t (k) zC (k)) 2rt W . zc (k)x . ^12 zCL2 ) ^ g^jg zCl6 J 
+  2 v     +  _ w. 

(2.19a) 

T dO (k)  L21 (k) 
= —5— U-^J  + T    U,. 

n (k) r26 of'- ' = -^- U.^  + T2-' U,^ - ~    U,xf + (t2W - zC^)) V,Ä 

(t (k) - ^c (k)) ^22    ^22  ^ 
2 

2rt (k) - zC (k)) ^t^    zC26 ) 
''ff  "r       5        'x^ 

m (k) T (k) 
T   (k) _ 61  U  -  + T (k) U   - 66  U    + rt (k)   zC (k^ v Tx^ 2~u'*ff + T62  u'xx   a^ü'xf ^^^l '16 XX 

(t M       „n  (k) 
62 zC^') 

W,f *P  + 
2rt (k) - zc (k)) Atgg - zc66 ; 

w, x«f 

Although transverse shear defomation is neglected in the theory discussed, 
transverse shear resultants can be determined from the equilibrium equations, 
i.e. the last two equations of Eq (2.7)> and are defined as: 

St 
= 

n    h^ 

y   f ,oo T *~'  dz xz 
k=l h k-1 

I  / 
k-1 Vi 

vl10 - (2.22) 
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In terns of the primary dependent variables U and w,   these transverse shear 
resultants are: 

n    - b61 n 
a 

2 ' x«f«f a 'xxif 12    ' xxx 

d26 

a 

21 

a0 

(dl2 + ^ob5 3di6 + —i£__ 2£_ w + —=i. w,      Ä   + d, n w, 
2 x»p^ a        'xx^ 11    'xxx 

(2.23) 

.  (b6l - W „ . (b22 " b66> .. ..      ., 
+  x  U, +   U. +   D,'0  U. 2 xifV s xxtp C)2    'xxx 

3d 
26 d22 , (dl2 + 2d66) v + w, + d,,,- w, 

xxip lb    ' xxx 

The inter-laminar shear stresses T v   ' and T    v      are formed ty consideration xz      ^ z 
of equilibrium in the x and tf directions. Summing the forces in the x-direction 
up to the (k-th) layer gives: 

k   h 

xz      __,  .(   x x,x   a  x«f,ip       xzo 

J"1  hJ-l 

k   h 

(2.210 

T 00 - - V   r^ (i a ^) + T ^) ) dz + x •f zo 
j«l h J-l 

Here txzo and ^ ^ zo are constants to be adjusted by conditions at the top and 
bottom shell surfaces.     Using Eq. (2.19a),  these expressions become 

k h. 

XZ ..j . I 
J-l     h 

(Tik)- T,^) 
T(J)U        ,  ^62   - -16 

12        'xxx a 'xxff 

/ m( j )        m( J ) \ 
. uii " T66 ) u. + _    »X¥f 

a 

n(j) 
j-l 

+ ft(j)      ZC00NW ,  Utl6   + ^1       3zCl6 ) w. ocij 

a (2.25) 
+ Ä-U„ 

(ti^  + 2tiJ)   -  zC,!^   -  2zcij)) 
12 "M 12 ^66 

/t (J). ,c (J)^ 
,Ct62       zC62   ) Tr dz 

2U 



>i J-l 
62        'xxx a ' 

(J) (T6iJ)- ga6J)) i + J u'xW   +-^-u'»*f "61 '16 

(t<^ + 2t<'>. 3zci>5>) "62 "26 

'xxf 

+ <aj)- -<J) 
^-iw, 

XXX 

(2.25) 

] dz 
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3-  EQUATIONS FOR LAMINATED ANISOTROPIC PLATES 

An important area of application is that of laminated anisotropic plates. 
In this section, the general equations of Section 1 are specialized for rectan- 
gular plates. 

DERIVATIOK OF TEE GOVHaiING DIFFERENTIAL EQUATIONS AND BOUNDARY COHDIHORS 

Figure 3.1 

A plate is defined as a shell with no curvature; therefore, Ri = R2 
and the line element is given by: 

2    2    2 
ds = dx + dy (3.1) 

where the change of variables of a » x and ß = y from Eq, (l. iß) has been made. 

The reference surface strains given by Eq (1.23) reduce to the following 
for a plate: 

Q.     - u 
*10   o,x 

€20 = Vo,y 

^   » u   + V 
•l20   o,y   o,x 

(3-2) 

The expressions for the changes of curvature are now: 

-J w. 
1   'xx 

'2 -w'yy (3-3) 

12 ^ W,xy 



The streas-resultants and stress-couples,   defined by Eq (l.26) and Eq. (1.27); 
for rectangular plates become: 

f -I X 

1 

N 
y 1 

Aii  xi2  A: 

A12    A22    A26 

Al6   A26   A66 

ox 

o,7 

U +  V 
o,y        OjX^ 

D *    D *    D ♦ 
11      12      16 

D *    D *    D * U12       22    ü2D 

0,f    D_*    D.f lb      2o      oo J  I 

1 f v,xxl 
v,yy 

11 ^ J 
(3.M 

f M 
X 

A 

M 
7 

- 

[UM 

D *    D *    D * 
11       12       lo 

D *    D *    D  # J12    u22    u2o 

D,f    D-*    D.* lb      2ü      oo 

uo,x 

V 
o,y            | 

- 

U            +   V           | o.y        o.xl 

D        D D ^ 
11       12       lo 

D12    D22    D26 

D16    D26    D66 

v'xx] 

''J (30) 

vhere Aij,   D^«,  and Dj* are defined by 3q (l.30)' 
"ij 

The three equations of equilibria for the plate element supplaaented by 
the ccnpatibility equation for the in-plane strain ccnponents at the reference 
surface of the plate constitute the determinative system of equations.    These 
equations,   as reduced from Eq (l.31) and Eq (1.32),   are 

N        + N x,x        xy,y N + H        »0 xy,x       y,y (3-6) 

M +2M +M «-q x,xx xy,xy        y,yy 

€10,yy +  ^20,xx "  Tl20,xy " 0 

(3.7) 

(3-8) 

It is convenient to regard the transverse displacement v and the stress- 
resultants Nx, %, and TS^j as the primary dependent variables for this system 
of equations. The moment and reference surface strains can be expressed in terms 
of these variables in the same manner as for cylindrical shells. 

o,x 

o,y 

U    + V 
o,y   o,x 

B 

N, x 

N 

N xy 

+  b 

[    V'xx] 

w'yy 

l^xy) 

(3-9) 
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M 

M -      b 

N 

N 

w. 
XX 

+      d v, 
yy 

(3.10) 

M xy N xy 
S», 

xy 

1 

where B,  b,  b ,  and d are defined by Eqs (2.11),   (2.13), and (2.1^).    Eq (3.9) 
and Eq (3.10) written explicitly are: 

Bn,N   + B,0II    + B.^-N      + b'w,       + b' w,       + 2b',w, 11 x 12 y        16 xy        11 'xx        12 'yy lb 'xy 10    = "o.x _ _  „ 

C0-    = v        = BnoN   + B00N    + B0,N      + b' w,       + b' w,       + Zhlsf, 
^20 o.y        12 x        22 y        26 xy        21 'xx        22    yy 26 'xy 

t 

(3.9a) 

+ V_  „ = B. 6 x        26 y        66 xy        61 'xx        62 'yy 66 'xy 
Oa20 = uo,y + Vo,x- *& 

Mx    * bllNx + b12Ny + bl6Nxy + dllW'xx + d12W'yy + 2dl6v'xy 

M      = b0-N   + b00K   + b  -N_   +0-^,       + d_0w,       + 2cU'W, y 21 x        22 y        26 xy      ^2 'xx      ^22 'yy        ^26 'xy 

M      » b.nK   + V0N   + b^^-N      + d-^w,       + cU^w,       + 2d,,w, xy        6l x        62 y        66 xy        15 'xx      ^26 'yy 66 'xy 

(3.10a) 

Introduction of the Airy stress function U defined in rectangular cartesian 
coordinates by: 

yy 
N = U, xx N xy U 

.xy (3.11) 

which identically satisfies Bq (3-6) reduces the detenainative equations to two 
primary dependent variables.    Substituting Eq (3'9) into Eq (3.8) and using Eq 
(3.11) gives: 

B22U'xxxx " ^"'xxxy + <2B12 + B66)U'xxyy " 2Blßü'xyyy + B11U' yyyy 

+ b10w,    + (2b,0 - bn/:)w,    + (b,, + b„- - 2b^:)w, 12 'xxxx  x 62   lo' 'xxxy  N 11   22   66' 'xxyy 

+ (2b^n - b0,)w,    + b0,w,    » 0 x 61  26' 'xyyy   21 'yyyy 
(3.12) 
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Substituting Eq. (3.10)   into Eq (3-7) again using Eq (3-11)  gives 

b,0U. +  (2b.0 -  b^)U, +  (T3nl   + b„0 -  2b^)U, 12 'xxxx      x    62        ID'  'xxxy 11        22 ob'  'xxyy 

v    ol        26      xyyy        21   yyyy        11   xxxx 16 'xxxy 

+ 2(cLn„ + 2cL,-^)w,    + k&^v, + d^^w. 
bo' 'xxj-y   2o 'xyyy   22 'yyyy 

= - q 

(3.13) 

Equations (3.12) and (3'13) are the generalizations of the Poisson-Kirchhoff 
equations to take into account the orthotropic properties of the laainas composing 
the plate.  The presence of both dependent variables in each of the two equations 
indicates coupling between the in-plane forces and the deflection surface. 

The boundary conditions, given by Sq (1.33)^ are summarized below to complete 
the fomulatlon of the plate problem. 

I II          1 

Force Boundary Conditions Displacement Boundary Conds 1 

I  1 (Nn - \) K - %)          1 
2 (Nnt " \t) ^t - v       1 
3 (Mn - Mn) (w'n - ^n)       j 

k K + Mnt,t " V (w - w) 

(3.1^) 

where 

Hn - nonnal force 

Nnt - in-plane shearing force 

QJJ -   Ireuisverse shearing force 

MQ - bending moment 

MJJ^ - twisting moment 

V - effective shear given by 

V = Q+ M . ... n   Ti   nt, t 
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un - nozmal displacement 

ut - tangential displacement 

w  - transverse deflection 

w,n - slope in the normal direction. 

Bars over the quantities signify that they are the prescribed values at the 
boundaries. 

In each of the four conditions, either the tarred quantity in column I or 
II must he prescribed. For that force or displacement which is prescribed, the 
bracketed quantity must vanish. This means that the unbarred quantity (that force 
or displacement frcm the interior of the plate) must take on the prescribed value 
on the boundary. 

The boundary conditions corresponding to the physical restraint may be 
thought of in terms of those of the usual conditions for a bending problem 
(conditions 3 and 4) and an in-plane problem (conditions 1 and 2). Certain 
plate problems may be decomposed into these two separate problems and treated 
individually. However, in general the problem must be treated as a combined 
bending and in-plane problem since U and w are coupled in the governing differ- 
ential equations and in the boundary conditions. 

Some examples of boundary conditions for a rectangular plate are: 

Clamped Edge - In a plate with a built-in edge both displacements UQ and 
v0, the deflection w, and the slope w,n are zero. This condition along the x 
axis is 

w    - 0    j 
y=0 'I y-0 H (3-05) 

oj   « O o 

u0 and v may be expressed in terms of U and w in a specific problem by the 
integration o? Eq (3-9a) 

Uo "/ (B11UV B12U'xx- W V'xx+ W 2b6lWV <* + fl(y) 

vo =/ «W B22U'xx- W V'xx+ V'yy* 2b26w'xy) ^ + f2<x> 

The arbitrary functions f jCjf) and f2(x) may be evaluated Vy differentiating 
UQ with respect to y and v0 with respect to x and substituting into the third 
Eq (3.9a). 
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Free Edge -    Along a free edge of a plate,  the in-plane and transverse forces 
and the bending moment vanish.    The displacements and slope,  however, are un- 
specified.    Along the x-axis,   this condition is 

Ml =0 

y«o 
VM- xy,x 

y=0 

N 

y=0 

ü'xx| 

(3.16) 

y=o 

880       NJ = - u. 
xy 

|y=o y»0 

My. and Vy may be expressed in terms of U and w by Eq. (3.10a) and Eq (3.21). 

M 

y»0 

b„,U,  + b„^U.  - b^U. + d,„w, + d ^w,  + Sd^x-v, 
21 'yy  22 'xx  26 'xy  12 'xx ^2 'yy   26 'xy 

- 0 

y«=0 

y=0 

= bonU,   + (2b,, - b„^)U,   + (b00 - 2V^)U,   + 2b>.«ü, 21 yyy    6l   26' 'xyy  x 22    bo' 'xxy    62 'xxx 

(3.16a) 

+ d^-w,   + it-cU^-w,   + (d,0 + 4d/-/C)w,   + dl£w, 22   yyy       ^26 'xyy  v 12   66' 'xxy   15 ' xxy xxx = 0 

y=0 

Simply Supported Edge - A simply supported edge pemits rotation but no 
deflection. Since it is free to rotate, the bending moment is zero. For the 
in-plane boundary conditions, either a fixed (pinned) or a free (roller) condi- 
tion may be prescribed depending on nature of the restraint. For a roller 
sxipport which produces no in-plane forces along the x-axis, the boundaiy condi- 
tions are 

wl    =0 

y«0 

Nl   -U, 

|y=o 

M 

y=o 

xx - 0 ; 
xyj     'xy 

y=o |y=0 

My in terms of U and w is given by Eq (3.16a). 

= 0 

ysO 

(3.17) 
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DSTfSl-lIKATIOK OF STRBSSBS  III AN INDIVIDUAL LAK1M AND 
Iin?3R-LAKIHAB SHSAR STRESSES 

The general expressions for the stresses in the "k-th" lamina are given in 
Ei (1.6). For the plate, this equation in tenns of the primary dependent vari- 
ables U and w becomes: 

x 

y 

t(k) 

m  T (k) 

U, 

u, 

-u. 

xx 

yy 

xy 

(t(k) - zc^h 

v 3 'xx 

■yy 

2w, 
xy 

(3.13) 

where T^k', t^k', and CT1^ are previously defined by Egs (2.20), (2.21), and 
(1.12), respectively. Equation (3.10) written explicitly are: 

><*) = T (^U,   + T Wu,   - T^l,       + (t^) - z(Mk)) w, x    11  'yy   12  'xx   ID  'xy    11     > . '11 xx 

+ (t W - sc(
k))v,  + ^t/^ - zcik)) w, v 12     12 ■'  'yy   v lo     16 '  'xy 

yy xy 

T (k) . T U)   + (k)   . T (k)   + ( (k) _ - (k)) 
xy     ol 'yy   b2  'xx   öo  'xy    öl      lo    'xx 

+ (t4
k) - zcM)  w,  + 2(t,l

k) - zC-^)) w, 
D2     26 '  'yy   v oo     DO '  'xy 

Although transverse shear deformation is neglected in this theory, transverse 
shear resultants can  be determined from equilibriun considerations.  The result- 
ants are defined as: 

\ I      xz 
k=l h. k-1 

dz 
^ 

h. 

r   t (k) 
k=i hk- 

y- (3-19) 
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Ihese stress resultants are deteimined frcm the monent equilibrium equations; 
i.e., the last tvo expressions of Eq (l.3l): 

I    -  M   + M 
x   x,x   xy,y 

a = M   + M 
y   xy,x   y,y 

Conibining these equations with Eq (B-IO) gives: 

i ■ b-.U.   + (bnn - b-.)U,   + (b,-0 - b,/.)U,   + b10U, A   J1 yyy 11   DO' xyy  v o2   lo' xxy   12 'xxx 

-o yyy    12    bo' 'xyy   l» 'xxy   11 'xxx 

: = b-.U,   + (b-. - b..)U,   + (b,. - V-)U,   + b^ U, 
y   21 yyy ol   ^o'   'xyy ^2   oo' 'xxy   5«i XXX 

22 'yy:^   2c 'xyy  v 12   oo/ 'lacy   lb 'xxx 

(3-20) 

(3-21) 

Figure 3.2 
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( k)     (k) The inter-laminar shear stresses ~Xz ' and Ty£ ' are foxmd by consideration 
of equillbriurn in the x and y directions.  Figure 3.2 shows only the change of 
the stresses in the x and y directions.  Summing the forces in the x-dlrection 
up to the k-th layer gives 

00 
xz y r (o (J) + T (J)) dz + U      J x,x     xy,y ^ xzo 

k   h (3-22) 

yz      £_•  J     y^y    xy,x yzo 
j=l h, -1 

Here t^zo an<-'- 'ryzo are constsuits to be adjusted by conditions at the top and 
bottom plate surfaces.  Using Eq (3.10a), these expressions become 

(k) 
xz r 

0=1      h.  . ■3-1 

I12    U'xxx+ U62       Tl6    JU'xxy    ^Tll       T66    ;U'xyy 

(3.22a) 

+ r (Aj,      + (t.SJ)- zC.SJ))w,      + (2t1P
)+ t.S^. 3zCnf-<5))w, 

'J        yyy        11 11    '  'xxx    v    lo 51       J    lo    '  ' 

^iJ))w,       + (t4J)- zcj^w, 66    /   'xyy    v  o2 62    ^   'yyy 
+ f+  (j)+ o^  (j)_  „p (j)    p„rr (J)w        j. /+  (J)     „^(^N^ 

12 12 

xxy 

dz 

yz f 
j-l      h 

j-l 

T62J)u'xxx+ ^22J)  " T6p))U'xxy+ ^i^ T26J))U' xyy 

+  T0
(
n
J)U,        +  (t^,5)-   zcj^^w,       +  (2viJ)+  tjj)-  azcj^-zcii^w, 21      yyy      61 16   ' 'xxx   v   6b        21 66        12 ' ' 

+  (t.^^H- 2t  (.j)-   SzC^K +  (t0l
j)-   zC,iJ))w, J    ^o   '   ' xy/       v   22 22     '   ' yyy c;b 

dz 

xxy 

(3.22b) 
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k.     METHODS OF SOLUTION 

Several methods of obtaining solutions to the plate Eqs (3.12) and (3.13) 
are discussed in this section. First, a method which involves the combination 
of two fourth order equations into one eighth order is indicated. Then, iterative 
and perturbation schemes are discussed as other possible methods of attack. For 
special orientations of the individual laminas, the differential equations for 
plates and shells simplify, and an extensive amount of information for solving 
these simplified equations is available. 

REDUCTION OF THE COUPLED EQUATIONS TO ONE EIGHTH ORDER EQUATION 

A possible method of solution of the coupled system of equations is to 
combine the two equations into one eighth order equation using the technique 
which Vlasov used to solve shallow shell equations (7).  For convenience, Eqs 
(3.12) and (3.13) are rewritten in operator notation: 

l{k)   (U) +L<U) (w) =0 (h.l) 

4U) (u) + 410 (w) = - * {k'2) 

(h.)       (k)       (k) where operators  12   ',  LX    ,   V:  ' are the following fourth order operators: 

4^ = B
22 ^ - 2B26 -f- + (2B12 + B66> -4-5 " 2Bi6 "T 

ox       ox oy ox oy       ox c^3 

.4 

oy 

.k v4 

ik)  = bi2 fr + (^62 " V "I— + (bii + b22 " 2b66) -fT2 
dx ex cy ex oy 

+ ^06i + ^ —TS +  02i -T 
ox oy      oy 

lih)  = d„ ^ + ^, -I— + 2(d„0 + 2d,J -i- 
ex ^      11 ^ 4     lo N. J x.      l2 OO  -. «i x..« ox oy ox oy 

+ '^26 T^ + d22 TT 
dx dy      oy 

If there exists a function (p such tha $ 
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(h.k) 
v-L^  (4») 

then S(i (if.l)  is satisfied identically and Eq. (^.S) beccanes: 

<8>(4) . ([4M]2-4'04MU ■' (*-') 

where lij. ' is the following eighth order operator: 

Pi ^ S 

iQ) '    [4 - dll B22]   |? + 2 [^ (2b62- \6)  + dllB26- 2dA2]  ^T 

+   [2b12 ^11 + b22 " 2b66) + ^62 " bl6^ - dil ^B12 + B66) 

^26 - ^ + 2d66) B22j   ax6 ^ 

+ 2 [b12 (2b6l " b62) + (2V - bl6^bll + b22 " 2b66) + dllBlß 

" 2dl6 (2B12 + B66) + ^d12 + 2d66) B26 " 2d26 B22]    ^p 

+ [2b12 b21 + 2(2b62 " bl6^2b6l " b26) + (bll + b22 - 2b66)2 

" dllBll+ 8dl6Bl6- 2(dl2+ 2a66^2Bl2+ B66> + 8d26B26- «W^J ^T 

+ 2 [b2l ^b62 - bl6) + (2b6l " b26Kbil + b22 - 2b66) + ^2 B26 

- 2d26 (2B12 + B66) + 2(dl2 + 2ä66) Bi6 " 2dl6Bll]   ^5 (^6) 

+    [2b2l (bll + b22 - 2b66) + (2b6l " b26)2 " d22 (2Bl6 + %6> 

+ 8d26 Bl£ + 2(dl2 + ^ Bll] 
a8 

öx" öy 

+ 2 [b21 (2b6l- b26) + ^2^- 2d26Bll] -—£! +   [4 " d22Bu] 
Ö8 
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The solution of Eq (^.5) may now be separated into a hcmogeneous and a 
particular solution. The particular solution should satisfy the loading condi- 
tion but may not necessarily satisfy the boundary conditions.  This solution may 
be deteimined by the use of trigonometric series. The homogeneous solution must 
be such that the sum of the particular and homogeneous solutions satisfies the 
boundary conditions. The latter condition may be satisfied in the same manner 
as that vised by M. Suchar (8) to detezmine influence surfaces for anisotropic 
plates, or by other means. 

ITERATIVE SOLUTION OF THE COUPLED EQUATIONS 

Since Eqs (3.12) and (3-13) are based on small deflection theory, the 
coupling between the in-plane stress function, U, and the lateral deflection, 
w, generally will have a minor effect on the solutions. Hence, as a first 
approximation, the system can be treated as an uncoupled system by omitting from 
the equations the teims which contain the b^j coefficients. Ihen, by substituting 
the first approximation into the teims containing the bj* coefficients, a second 
approximation may be obtained. The process is then repeated to obtain higher 
order approximations. 

Adopting the operator notation used previously, Eqs  (3-12) and (3-13) may 
be written as: 

4M 'V - - « - 4''> ("n-l* <''-8) 

where n represents the order of the approximation, w0 and UQ being equal to zero. 
It can be seen that this system is effectively uncoupled since the higher order 
approximations of one variable are coupled to the next lower order approximation 
of the other variable. Hence, the methods of solution applicable to the uncoupled 
equations given in the literature and summarized below may be applied to this 
system of equations. 

Since coupling also exists in the expressions for moment and for in-plane 
strain, Eqs (3-9a) and (3.10a), which are used in stating the boundary conditions, 
these expressions must also be rewritten in iterative fonn: 

u    = B-.-.U   + BnoU   - B^U   + b' w .  + b' w , 
on x   11 n,yy  12 n,xx  lb n,xy  11 n-l,xx  12 n-l,yy 

+2b',-w . 
lb n-l,xy 

V   v 
= B12Un,yy+ B22Un,xx ' B26Vn,^+ b21 Vl,xx+ b22 Wn-l,yy 

(^.9) 

n,y 

+ 2TaoC w    . 26    n-l,xy 
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u + v = B,   U + B,-  U - B^ U + b^, w    n     
0n,y        0n,x        lo n,yy b    "'^        6o    n,xy        0      n-1'xx 

i 

+ lbs - v    , + b ■, w    , oo    n-l, xy o2    a-1, yy 
(M) 

x 11    n,:cc        12    n,y7 lo    n,2!y        11    n-l,yy        12    n-l,xx 

lo    n-l,xy 

(^.10) 
M      • d,, w + d„- w + ^dUc w + b.,,  U    . + b^0 U    , y 12    n,xx        22    a,yy <i6    n,2y       21   n-l,yy       22    n-l,xx 

" b26 "n-l^xy 

V   - di6 \,*z + ^6 vn,yy + 2d66 ^n,^ + b6l Un-l,yy + b62 0n-l,« n 

- b-,- U . 
oo n-1, xy 

PSRTUR3ATI0N oOLUTIOU 0? TH3 C0UPL3D 3QUATI01K 

Jor aaay zuaterials of practical Importance, the individual laminas will be 
only slightly orthotropic.  In such cases, the operators in Eqs (3-12) and (3«13) 
will be only slightly different from those in the equations for Isotropie plates. 
This suggests that such problems may be treated by a perturbation method of solu- 
tion (9. 10): that is, the solution for a substitute Isotropie material may be 
•ised as a first approximation, and then successive corrections may be obtained 
be account for the orthotropy. 

To apply perturbation theory, Eqs (3-12) and (3-13) are written in a form 
such that they may be seen to be the equations for an Isotropie plate modified 
by small corrective terms. To this end, the following parameters are defined: 

„ ..!* 
"B   B 

^ll  ■L   B 

B22 
k22 -! ■ -r 

Iß   B *-,* 

*26 -   B 

k   -1      1 %6 
k66    1    2(1+a/B) B 

lu-V 

•«--¥ 

(^.11) 
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-,   Dll      *  dll+ Dll nii = 1- — >    ni! D— 

n22 = 1 - "D- '  n22 =  D  

D12 dlP + D12 
^D   D '    12      D 

2   D66     «2   d66 + D66 n66 = ^^ " 275^ "D" '  n66 = ITj^    D  

nl6 " D- '   ni? D  

n,^ = 
D26    _  d26 + D26 

2ö   D > n2? 

where B and D axe the Tnaximums of B^i» ^22>  OT ^22 + ^66>  and ^11»  D22» or 
Di2 + 2DßQ, respectively. This latter condition guarantees that Sie paraneters 
kij, Jti.j» mij> Bij» and- nij are always less than 1.0 in magnitude. Four con- 
stants have been used to define the substitute isotropic material: B, Vg, D, 
andVo . This has been done for convenience, since most problems will involve 
either an in-plane stress problem or a bending problem. The nuaber of parameters 
has also been selected for convenience in the application of the method. 

When Eqs (3.12) and (3-13) are expressed in tenns of these parameters they 
become 

(1 - k„0)U,      - 2k0^ U, +    12 - 2(1+20  k^l U x 22'  'xxxx 26    'xxxy        [ v B'    661    ,xxyy /^ ^ 

" 2kl£ ^xyyy + ^ " kll) ü'yyyy +   *12 "'xxxx + ^ ^62 ' **> ^xxxy 

+ ( fa * Ij* - 2Ä66> ^xxyy + (2 ^61 " ^ W'xyyy + 4l "'yyyy " 0 

m10 U, + (2ms~ - m^) U. + (m,, + m^0 - 2m,r) U, 12    'xxxx      v    62        16'    'xaaty      x  11       22 66'      xxyy 

+ ^61 " "W U'xyyy + m21 U'yyyy + ^ " nll " nl!> "'xxxx 

+ ^ni6 " n^ ^xxxy + [ 1 " -^ - (1 -^D)(n66 + n6^]    -'xxyy 

+ ^^26 - n2^ ^xyyy + (l " n22 " n2p w'yyyy = D 
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It may be seen that if the parameters k^j, JL^i, ^±j>  n±A>  a,n^ nlj are so sma11 
that the teims containing then may he neglected, the equations for isotropic 
plates are recovered. 

Since U and w may be considered to be continuous functions of the parameters 
kjj, jßij, m±A>  nii> an(i niT> they may be expanded in series in teims of powers 
of the parameters. However, from a computational standpoint, this method of 
solution is of practical value only when the terms containing squares, products, 
and higher powers of the parameters are negligible. Therefore, the power series 
expansions will be used in the following foim: 

U - U + k. . U. . . + 0. . U . .. + m., U .. + n. . U . . + n.♦ U * o   ij kij  *ij  iij   ij mij   ij nij   ij nij 

(k.lh) 

o ' ""ij "kij ' *ij " >.ij " '"ij "mij ' "ij "nij ' "ij "nij 
w = w +kJ.w, ..+I..W. .+m..w..+n..w..+ n* w * 

kij  *ij  * ••   - '     -   ■ 

The substitution of these expansions for U and w into Eqs (^.12) and (4.13) 
results in the following sets of equations when the coefficients of like powers 
of the parameters are equated: 

V* Uo = 0 

^   o  D 

(4.15) 

v  kll   o,yyyy 

k 
"  K22 - o,xxxx 

V*' UI,-IA = 2U (^-iß) v  klo    o,xyyy v   / 

k 
V    U, ^  = 2U '  k2o    o,xxxy 

V^ U, ^ = 2(1 +30 U v  k66        B  o, xxyy 

111 o,xxyy 

rTU it   - - w _ (^.17) v  |12     o,xxxx 

V tie o,xxxy 

ho 



k 
V ui2i - " wo,yyyy 

V ui22 = ■ ^xxyy 

▼^ ^26 - Wo,xyyy 

▼Sol - - ^x^y 

V   Ui66 = ^o^xxyy 

Vw        = - U mil o,xxyy 

^ W
m12 = ■ üo,«« 

V    wnll = Wo,3acxx V   wnii 

(^.17) 

V w
miß "    o,xxxy 

r»   w        ■ - U v wm2i        o,yyyy 

^w     --u ^-W V ^2 o,xxyy 

V1" »«26 " U0,m 

*k wm6l " " 2Vo,*wr 

Vk vm62 ' " ^cxxxy 

V w
m66 = 2Uo,XXyy 

w nil       o,xx!cx 
(^.19) 

V   wni£ = " ^»ay V   wnlS = ^xxxy 

»H 



v  n22   o,yyyy v  n22   o,yyyy 

Y  n2o o,xyyy 

7^ w^ - (1-1' ) w, 'n66 D' o,xxyy 

7 wn26 
W o,xyyy 

7 w * - v iil2   o,xxyy 

v »nel-^^V 

(^.19) 

xxyy 

Eq,\iations (^.15) are the differential equations of the first approximation. 
Equations (k.lß),   (4.17), (4.18), and (4.19) are the differential equations of 
the corrective teims foiming the second approximation. It should be pointed 
out that the equations involving wkjj, vX±j,  Unji> 

ancL Umi2 have been omitted 
uatlons are all or the foiro0 «^(w, U) = 0, and 

their solutions are identically zero. 
from this sucanary since these equat! 

Since the elastic constants appear in the expressions for the bending 
moments and in-plane strains, the boundary conditions for the above sets of 
equations will also be perturbed. Wien the bending moments are expressed in 
terms of the perturbation parameters, they become: 

M = - Dl m,, U,  + m,0 U,  - m_^ U,  + (l-nnn - n *) w, 
^c     | 11 'yy   12 'xx   lo 'xy  x  11   11'  'xx 

+ (^T, - n *) w,  + 2n-/: w, \ V*'D   12'  'yy    16 'xyl 

\ "  " D[n21 U'yy + m22 U'xx " m26 U'xy + ^D " ^ V'xx 

+ (1 - n22 - n2p w,^ + 2(n26 - n^) w,^] 

Mxy = " Dlm6l "'yy + ra62 U'xx " m66 "'xy + (ni6 ' ^ W'xx 

+ (n26 - n2p v>yy + (1 - n66 - n^) w,^ 

These moments must now be expanded in the same manner as for U and w,   i.e. 

(4.20) 

M - M  + 
x   xo 

1^ . M . . . + B. . M -. . + m., H ^,, + n. . M . . + n.* I 
ij, xkij  *ij x fij   ij xmij   ij xnij   ij i .* 

xnij 

Substitution of the expansions for M, U, and w into Eq (4.20) leads to the follow- 
ing sets of equations: 
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M xo 

M yo 

[     o,xx       "D    o,yyJ 

I     o,yy      ^D    o,xxJ \^'*J-f 

M        = - of   (1 - VJ v        I xyo [ D      oTxy| 

M    . - ■ - D f  w ,, + i;^ w , n        + U       ] xmll [     mil,  xx       "D   rail, yy       o>yy( 

Vll " ■ D[   Wmll,yy +   »D Wrall,xx] ^^ 

Mxymll = " D[    ^ " ^D) 
Wmll,xy] 

M 
J 

M 

d    ,.  = - DI    w ,, +  5;_ w ., - w 1 xnll |      nil, xx       "D   iill,yy        o,xx j 

Vn - - D[   Vnll,yy +  ^D V
nll,xx] ^^ 

Mxynll=-D[    ^"^D^nll,^ 

Sirailar expressions may be written for the remaining sets of equations. 

SFJICIALIZATION OF TH3 PLATS EQUATIONS FOR PARTICULAR ORISNTATIONS 

The  two governing Sqs  (3-L2) and (3« 13)  can be specialized for certain 
orientations of the laminas composing the laminated plate.     In the following, 
the discussion is  restricred to plates composed of laminas of identical thick- 
ness.     Tiro general cases will be discussed:    pairwise orientation with symmetry 
about the middle surface and spiral orientation.    Methods of solution associated 
with each of the cases are  indicated, and wherever the equations have already 
been solved,   the  literature is ciLe... 

PAIRWISE ORIENTATION WITH STCMMSTRY ABOUT THE MIDDL3 SURFACE 

This classification refers  to a laminated plate made from pairs of the same 
orthotropic  laminas.     Ihe  laminas are situated such that one lamina of a pair is 
at the same distance above as  the other is below the middle surface (which is 
also taken as reference surface).    The principal axes of both laminas of the pair 
also run in the same direction. 

This orientation uncouples the in-plane and bending effects since D^* always 
vanishes.     Equations  (3.12) and (3-13) reduce to 

B  , U, -  2B„^ U, +  (B^+ 2B,^)   U. - 2B •-  U. + B      U, =0 22    'xxxx        26    'xxxy    K 66      012'    'xxyy       l6    'xyyy      11    'yyyy 
(4.210 
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V'xxxx- ^ W (2D12+ ^^xxyy* ^^^yyy* ^^yyyy = ^x^) 
(^•25) 

Thus, the laminated plate is equivalent to e    homogeneous emisotropic plate. 

Further reduction of the Ajj is possible hy having two pairs of laminas 
situated so that there exists symmetry about one of the coordinate axes (hence 
about both since the material considered here is orthotropic).  In this case, 
which shall be called pairwise equiangular orientation, A^g and A25 are annihi- 
lated, thus Bjjg and Bgg vanish in Eq. (4.24). The equations in this case are 
orthotropic in the in-plane forces and anisotropic in bending. 

A special case of the above, when all the pairs are either at plus or minus 
45° from a coordinate axis, further reduces the equations. Ilie elastic coeffi- 
cients become 

Cll = C22 "I  [Cll+C22 + 2C12 + ^66] 
312=l   [C11+C22 + 2C12-  Vl 

[C22 -  Cll ] 

"I   [C11-2C12 + C22] 

C^C^t    IC...-C.   I + for +45° 
- for - 45( '16      026 1   ^ J.JL   1 _„      ,co 

All 
s A22 

Bll - B22 

Dll 
9 D22 

C6£ 

The corresponding elastic constants associated with the plate problem reduce to 

Al6 = A26 = 0 

B16 = B
26 = 0 

Dl6 = D26 

Equations (4.24) and (4.25)  become: 

Bn1  U,     _ + (B.. + 23,.)  U, + Bnl  U, =0 (4.26) 11   'xxxx 66 12'      xxyy        11    'yyyy v ' 

Dnnw, + 4D.,/-w, + (2Dno+ hD^v, + 4D^w, + Dn,w, = q(x,y) 11 'xxxx        16 'xxxy    x    12       66' 'xxyy        16 'xyyy      11 'yyyy     HV  '*' 

(4.2?) 

These equations describe a special form of plate, orthotropic in the In-plane 
effect and anisotropic in bending. 
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Another similar special case vhen all the pairs are running either parallel 
or perpendicular to the coordinate axes peimits simplification of the equations. 
The elastic coefficients in this case are 

- h h C^ -  C^ cos 9 + C22 sin 0 

- k h 
C22 " Cll Sin e + C22 COS 0 

^66 = C66 

Ü12 = C12 

9 in this case is either 0° or 90°' All the A^ and Dj* svirvive except the 
ones with subscripts l£ and 26. Consequently B^g ana E^g also vanish. The 
governing equations here are 

B22 "'xxxx + ^66 + ^  "'«cyy + Bll "'yyyy " 0 ^2^ 

Dll W'»Qac+ (2D12 + ^66) ^xxyy + D22 ^yyyy = ^'^ ^'^ 

These equations describe a plate which is orthotropic in both in-plane and bending 
effects. Furthemore, if there are the same number of pairs in both directions, 
then An = A22 and B^ = BggJ so that Eq (^.28) becomes the same as Eq (4.26)- 

Several authors have dealt with equations of the same form as Eqs {k.2h) 
and (4.25) in connection with particular problems. Green (ll) exhibited the 
method of solution to these equations in connection with an aeolotropic single- 
layer plate subjected to in-plane forces. Lekhnitskii (12), (13) also solved 
the same pair of equations. Both these authors used a technique involving complex 
variable theory. Pell {lh)  solved a problem of thermal stresses in a thin aniso- 
tropic plate. Luxenberg (15) solved a problem of the torsion of an anisotropic 
plate. Both of these problems were governed by an equation of the same fom as 
Eq (4.25). Other authors, for example Green and Taylor (16) (17), Green (iS, 19), 
Fridman (20), Okubu (21), Morris (22), have dealt with equations of the foira of 
Eqs (4.28) and (4.29). They essentially used the same method as that used by 
Green and Lekhnitskii.  Girlonann (23) discusses the solution to Eq (4.29) using 
a double Fourier Series in connection with an orthotropic single-layer plate; 
his method will be discussed In Section 7 of this report. 

When the equations are of the form of Eqs (4.24) and (4.25), the distribution 
of stress near a hole in an infinite laminated anisotropic plate can be calculated 
using the technique presented by Savin (24) or, for the case of a circular hole 
in a laminated plate which behaves orthotropically, those presented by Green and 
Taylor(l7).  Savin extended the Muskhelishvili method for the solution of plane 
elasticity problems to solve the anisotropic plane problem for an infinite plate. 
Since in the absense of transverse loads, the differential equations for the plate 
and for plane elasticity are of the same form, the method is applicable to both 
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cases. The detennination of general expressions for stresses is not practical 
since the stresses are determined from only the real part of the complex poten- 
tials which comprise the solution. 

SPIRAL ORIEHTATION 

This classification refers to a layered plate made of laminas such that the 
elastic axes are distributed in the form of a spiral. Only the case denoted as 
equiangular spiral orientation will be discussed since all other cases are too 
complicated to be Investigated on a general level. The equiangular spiral 
orientation describes a plate foimed by alternating succeeding laminas from the 
middle surface at equal but opposite angles (one positive and one negative) 
from a coordinate axis. Each succeeding pair must have a larger angle than the 
previous pair. For this case all the A^A and D^j survive except those with 
subscripts iß and 26. All the D-j? are annihilated except for the ones with 
subscripts l6 and 26. The detenninative equations become 

B22 U'xxxx + (B66 + 2B12> U'xxyy + Bll "'yyyy + fD^ <2B12 " B66) 

+ 2D2^ B22] W'xxxy + [*>£ V D2? ^lif V] W' 
(^•30) 

xyyy s0 

[V (2B^- B66) + ^^ B22]   U>xxxy +   [2D1? Bll+ D2? (2B22- B66)]    U' 

" Dll W'xxxx +    [Dll D2? (8B12+ 2B66)  + kD2f Bll + kJ>2f B22 

" (2D12 + ^    ^xxyy " D22 ^yyyy = " * 

xyyy 

(Ml) 

These equations are partly coupled since both dependent variables appear in the 
equations. 

The solutions to Eqs (4.30) and (4.31) may be found by raising the order 
of the differential equations up to the eighth order as was discussed in the 
beginning of this section. 

SPECIALIZATION OF THE CYLINDRICAL SHELL EQUATIONS FOR PARTICULAR ORIENTATIONS 

The two determinative Eqs (2.16) and (2.17) can be specialized for certain 
orientations of the laminas composing the layered shell.  The following discussion 
will be restricted to cylindrical shells composed of laminas of the same thickness. 
Suppose that the laminas are situated such that one lamina of a pair is at the 
same distance above as the other is below the middle surface of the shell (now 
taken as  the reference surface). Both laminas have the same orientation of their 
principal elastic axes. In this instance, the H^* always vanish. Accordingly, 
Eqs (2.16) and (2.1?) reduce to 

B „ U,    - 2Br^  U,    + (B^ + 2B10) U,    - 2B,,- U, 
22 'xxxx    26 'xxxy  v 66    12'  xxyy    16 'xyyy 

(4.32) 
+ B-, U,    ' - w,  =0 

11 yyyy a 'xx 
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If 

Dll W
'XMOC 

+ ^16 W'XXXy + 2^ + ^ ^xxyy + ^26 ^.cyyy 

22      yyyy     a   'xx     uz 

In the above we have set 

1    ö    = Ö 
a    c5<p" cjy 

These equations indicate that the laminated shell is equivalent to a homogeneous 
anisotropic shell. Further simplification is possible by having two pairs of 
laminas situated so that there exists symmetry about the coordinate axes x, y. 
In this case (called pairwise equiangular orientation) A-jjg = A26 = 0 , thus 
Bl6 = ^26  = 0 in Eq (^.32). A further specialization results if all pairs are 
situated at plus or minus ^5 degrees from the coordinate axes. In this instance 

All = A22 A16 = ^ = 0 

Bll = B22 Bl6 = B26 " 0 

Dll = D22 
D16 " D26 

Another special case arises when all pairs are situated either parallel or 
perpendicular to the coordinate axes. The governing equations here take the form 

22 'xxxx   60   12'  xxyy   11 'yyyy     a.   'xx \ -« / 

Din v, + 2(Dno + 2IW) w,    + D„ w,    + - U,  « q_        (^-35) 11 'xxxx   v 12   66/ 'xxyy   22 'yyyy  a 'xx  ^z       \    JS/ 

These equations describe a Oaminated cylindrical shell which is orthotropic in 
both in-plane and bending effects. 

Equations (4.32) and (4.33)» or the specializations discussed subsequently, 
are of the general form 

LlU'iW'xx = 0 (4-36) 

i[U'xx + L2V = *z ^'^ 

where Ln and Lg are fourth order linear differential operators in x, y. Special 
foms of the operators occur for particular orientations of the Iwnlnaa as 
described. A method of solving equations of this type has been suggested by 
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Dll ^xxxx + kD26 V'xxX3r + 2(D^ + 2D66) ^xxyy + 4D26 ^xyyy 

22   'yyyy     a   'xx     Hz 

In the above we have set 

1   ö    = Ö 
a   ci«p     cy 

These equations Indicate that the laminated shell Is equivalent to a    hoacgeneous 
anlsotroplc shell.    Further simplification is possible by having two pairs of 
laminas situated so that there exists symmetry about the coordinate axes x,  y. 
In this case (called pairwlse equiangular orientation)    A^ ■ Agg = 0 ,   thus 
Bl6 = ^26 = 0 In Eq (4.32).    A further specialization results if all pairs are 
situated at plus or minus h-3 degrees from the coordinate axes.    In this Instance 

All = A22 A2£SA26'0 

Bll = B22 B16 ^ B26 " 0 

Dll = D22 D16 = D26 

Another special case arises when all pairs are situated either parallel or 
perpendicular to the coordinate axes. The governing equations here take the fonn 

B U,    + (B^^ + 2B,„) U,    + B  U,    " - W,  =0 (4.34) 22 'xxxx  v 66  "12' 'xxyy  11 'yyyy  a 'xx X"*-?*/ 

Dnn v, +  2(Dno + 2D^) w,    + D„ w,    + - U,  " q_       (4.35) 11 'xxxx   x 12   66'    'xxyy       22 'yyyy  a 'xx  TS       
N
 

J ' 

These equations describe a laminated cylindrical shell which is orthotropic in 
both in-plane and bending effects. 

Equations (4.32) and (4.33), or the specializations discussed subsequently, 
are of the general foim 

LlU"5w'xx-0 (lf-36) 

SU'xx + I^v-^ ^37> 

where LT and Lg are fourth order linear differential operators in x, y.     Special 
foims of the operators occur for particular orientations of the laminas as 
described.    A method of solving equations of this type has been suggested by 
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Vlasov (7).    Assurne the existence cf a function       *£ {x.,  y)  defined such that 

U =+ -   ^, xx 

"uhen 3q. (i+oS)  is substituted into Sq.s  (4.30) and C*'37)>   the first eolation is 
identically satisfied,  and the second equation tai:es the fom 

Stress-resultants,  stress-couples or reference surface strains can be expressed 
in terns of    i   in a strai-ght-forvrard nanner. 

For the case oi a latiinated orthctrcpic cylindrical shell,  Scjs (4.3-+) and 
(4.35) are replaced by 3q. (4.39) where Lp   Lj take the fonn 

LlsB22(    ^^^+(B66 + 2V  (    )'«W
+B11(    ^'yyyy 

L
2
5Dll(    ^x^ooc + 2(D12 + 2D66H     )Jxxyy 

+ D22(     ),yyyy 

Finally,  for an isotropic shell, 

L1 = S^ 

3h3 ^ 4 
2    12 (i-an v 

(4.40) 

(4.41) 

Vk'(     )'XXXx+2(     )'«cw+ (     ^ 

where 

'xxxx "xxyy yyyy 

And Eq (4.3$) takes the well-known fona 

1 . 2 
a 

v84+ii^ *.^-- <^> 
where E, X»     are modulus of elasticity and Poisson's ratio and h the plate 
thickness. 
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PART II: APPUCATIOMS OF PLATE THEORY 

INTOODUCTIOW 

Several applications of the general theory for laminated anisotropic plates 
are discussed in this part. First, the equations of the plate theory are modified 
for the cylindrical bending and extension of long rectangular plates so that solu- 
tions may be obtained by integration or by transposition of known solutions from 
beam theory. One example is given to illustrate a step by step method of obtain- 
ing the elastic constants for a plate.  Next, solutions are obtained by deteimin- 
ing the edge loads which will cause the deflected surface to become a prescribed 
quadratic surface. The following examples are given: uniform tension, pure 
shear, unifozm bending about one axis, and pure twist. As discussed under methods 
of solution, for certain orientations the general equations reduce to those of 
orthotropic plate theory. 53ie solution for the uniformly-loaded simply-supported 
rectangular plate is presented. As illustrations of the solution of general 
equations by the perturbation method, three examples are given: the clamped 
circular plate (for which an exact solution can also be obtained), the simply- 
supported rectangular plate, and the rectangular plate simply supported on two 
opposite edges and clamped on the other two edges. Finally, the problem of 
obtaining the optimm arrangement and orientation of the layers so as to minimize 
the deflection in rectangular plates is discussed. 
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5-     WEAK CYLIIUHICAL BSKDIIW AHD SXTHKSIOK OF A L015G 

RSCIAIIGULAR UümikTZD PLÄÜS OF ORSBOTROPIC MATSRIAIS 

A class of problens which deserves atten-clon is that of extensional and 
flexural behavior of a long rectangular laminated plate conposed of orthotropic 
raaterial.    '«'hen such a plate is  loaded by a system of forces which does not vary 
in the y-direction,   the deflected surface at sane distance fron the ends is 
cylindrical (i.e.,   it is also independent of y).     Therefore,   the displacement 
v is zero and the displacements u and w are independent of y.     The plate may be 
investigated by studying a typical elemental strip bounded by two planes y = 
const.     (Figure 5.1).     In essence the problem beccces  one-dimensional,   and the 
deflection curve resembles that of a deflected beam. 

: 

Figure 5.1 

As a consequence of the type of displacements,   6 y = 0 and  o xy ■ 0.     The 
stress-strain relations given by Eq (l.6)  simplify considerably for the elemental 
plate strip. 

x ^11     tx 

ay     ci2   tx   z-xry öx 
cll 

(5-1) 

xy 

n (i) 
'16 

it     €x'i-(TT   ax 
CD 
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Corresponding simplification of the expressions for the stress-resultants 
and stress-couples may be seen. Equations (S-'O and (3«5) become: 

N = A.,, u   - D * w, 
x   11 o,x   11 'xx 

N = Ano u   - D* w, 
y   12 o,x   12 'xx 

(5-2) 

N xy 26    o,x   16  xx 

M D * u ull    o,X 

M = Dn* u y   12 o,x 

11  xx 

12 'xx (5-3) 

M  = Dnt u   - Dl£ w, xy   lo o,x   16 'xx 

For this plate strip, the differential equations for the transverse deflec- 
tion w and the in-plane displacement UQ can be uncoupled. OVo general cases of 
loading will be discussed: weak cylindrical bending and unlaxial extension. 

WEAK CYLIOTRICAL BENDIHG OF A PLATE STSIP 

Consider a simply supported plate strip of length L. Die origin of the 
coordinate system is located at the left hand side of the plate strip. The x-y 
plane lies In the reference surface of the plate; the x and z axes are directed 
to the right and downward, respectively, as shown in Figure 5.2. This plate 
strip is loaded by an arbitrary system of transverse forces and moments M-^ and 
Mg at the ends. The in-plane force Ng is taken to be zero. 

*(*) 

•«■ x 

N - 0 
x 

Mx - Mx(x) 

Figure 5.2 
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Under the action of the external loads, the plate strip deflects.  The 
deflection curve can be determined in the following nanner.  Since Kx is zerc 
hy setting the first of Eq (5-2) equal to zero, the following relation bet-ee: 
UQ and w is obtained. 

Di! 
U  = -7  V, 
o  A   ' xx 

(5.4) 

Substitution of the above equation into the first of 2q. (5.5) fives 

A, 
w. xx 

11 

^iV - Aii Diu 
K (x) 
x (5.5) 

Sqioation (5.5) is the governing differential equation for the deflection curve 
w and Sq (5«4) is the associated differential equation for the in-piane reference 
surface displacement u .  Equation (5.5) is of the sane form as the equation for 
the deflection of an isctropic beam. Only the flexural rigidities are different. 

All Dll 
The quantity 

(Dl*l)2 

All 
replaces the visual flexural rigidity SI cf the 

isotropic beam. Therefore, transposition of known solutions for isotropic beans 
with the corresponding loading conditions is possible. The solution may also be 
obtained by double integration if the expression for ^(x) is known. 

Hie solution to Eq (5.'+) may be obtained by direct integration 

uo(x) 
\l 

(D^r - A^ D11 

J       M(1) d^ + k (5.6) 

The constant k is to be evaluated from a prescribed boundary condition.  The 
boundary condition for i^., can, however, be arbitrarily selected since it repre- 
sents only a point from which the displacement is measured. Only the derivative 
UojX which is the in-plane strain is of any interest in this problem.  Therefore, 
let the boundary condition be taken as 

\fy 

Di! 

(D^)  -A^D^ 
J       M(|)d^ + k (5.7) 

or 

k = - 
Di! 

^i!)  -AiiDii 

L 
2 

J       M(^) d^ (5.3) 
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Thus far the problem has proceeded as for the case of the cylindrical bend- 
ing of a single-layer isotropic plate strip except for the different flexural 
rigidi-cies.     Now,   however,   unlike the single-layer isotropic plate strip,  which 
requires only a transverse bending moment M^ to maintain the cylindrical deflec- 
tion surface during bending,  additional force and moment components  (Mxy,   My» 
r'xy) raust be present to preserve the cylindrical surface for the laminated 
anisotropic plate strip.     Unless  these forces and moments are developed at the 
supports,   the deflected surface will not remain cylindrical and warpage will 
occur along the y-dlrection.     These forces and moments may be computed from 
3qs  (p.2) and (3'3)>     The stresses may be computed from Sq (S^läa). 

UHIAXIAL 3XT3SSI0N 

Consider the same simply supported plate strip with the coordinate system 
as shown in Figure 5-3«     At the ends of this plate strip an in-plane extensional 
force of magnitude N is applied.     The bending moment ^ is taken to be zero 
in this case. 

 *. :c 

N   = :i 
x 

Figure 5-3 

Because this force is applied at the reference surface (which is also the 
surface of the coordinate plane x-y), the plate strip will not only elongate but 
also may bend.  This behavior occurs "oecause the applied force may not coincide 
with the centroid for a tensile or compressive force (the point at which an axial 
force causes no bending) on this section. The deflection curve and the extension 
can be determined in a manner analogous to that used in the previous case. The 
first of 3q (5.3) is set equal to zero, from which 

o,x D^ w'xx 
(3.12) 

Substituting 3q (5.12) into the first of 3q (5-2) gives the differential equation 
of the deflection curve v. 
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" Ki D
II - (Diin 

(5.13) 

Again Eq (5'13) is of the same form as the equation for the deflection of 
am isotropic beam. Only the flexural rigidities are different.  By replacing 

SI of the beam equation with 
All Dll (^)2 

Dll 
for the anisotropic laminated 

plate, knovn solutions from beam theory for corresponding loadings may be used. 

The solution to Eq (5.12) is obtained by direct integration: 

u (X) -L iL_  4X       + k 
0 /A,, D., - (D *)2 

• 11 11 

(5.1^) 

Let the boxu-dary condition for the evaluation of constant k be arbitrarily 
selected as 

uo(o) (5.15) 

The reason for such a specification vill be apparent shortly.    Therefore k 
is given by 

k = k. (5.16) 

To maintain a flat surface during extension, a bending moment must be applied 
to cancel the deflection caused by the in-plane extensional force acting at the 
reference surface. Application of this bending moment may be thought of as the 
transfer of the applied force from the reference surface to the centroid for 
tension-compression of this section as shown in Figure 5.k. 

reference surface 

M. 
my * 

11 
x  A 11 

.X 
centroid for 
tensile or 

£oragressive.ifqrc§__t.     ^ 

Figure S.k 
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To remove the def lection cvjrre,  a nonent of magnitude hl^ 
»D 11 
All 

is applied 

at the endä.     SuperposiUö both solutions of w then gives  the condition of a flat 
plate. 

v(x) = vext(x)  + v^U)  = 0 

and 

u        (x)  = 
bend 

Dll N 

x + k 

\l   [^ll^-^^ll] 
The boxmdary condition for UQ-V^ d is taien as 

u   (o) = k 
0-bend    1 

(5.17) 

(5.13) 

(5.19) 

so cha^ for the cooplete problaa the displacement UQ at x = o is zero. Therefore 

"oend = k. 

and 

u   (x) = 
o 

N (DJf)' 
x + k 

'"oend    A11[(D1*)^ - D^ A! 

The superposition of u0(x) for extension and u0(x) for bending gives 

o     A^ 

(5.20) 

(5.21) 

(5.22) 

As was mentioned previously the transfer of the in-plane extensional force to 
the centroid for tension-compression of this particular section gives the same 
result.  The eccentricity of this centroid from the reference surface is given 
by the formula 

ecc. 
M 
N  D 

Di! 
(5.23) 

11 

When the load is applied at the centroid, no bending will occur. 
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As  for the previous case of cylindrical bending,   additional restraining forces 
and moments must be developed at the supports to prevent warpage along the y- 
direction.     These quantities are again computed from Eqs  (5-2) and (5.3)    Stresses 
are given by Eq (S'lQa)- 

Table I is a summary of the cylindrical bending and uniaxial extension 
problems. 
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SUPERPOSITION OF SOLUTIONS 

Many problems with different loadings and different support conditions may 
be found by superposing the previous cases.     As an example,  consider the following 
plate strip shown in Figure 5•5- 

^^x^rTTTrn 

Figure 3-5 

This problem may be solved by superposing the cases of a transversely loaded 
plate strip and bending by unequal manents.     The bending moment for the bending 
problem is 

M    - M 
Mx(x) = M1 + i       L      ) x 

Ttie  bending moment for the triangularly loaded plate strip is 

w(x) for both cases can be obtained by double integration.  Then these two solu- 
tions must be supei^osed in such a way that 

w,x(o) = O and w,x(L) = 0 

These two conditions deteimlne the magnitudes of M^ and M^. 

v.^o) - - (M, + an,) § - g§-- 0 
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w,x(L) kl* + 
M1L + 

M L 

Solving these two equations gives 

M1- 
kLf 
30 

M^ kL- 
20 

Note that these end moments are the same as that for the isotropic beam of 
the same loading and boundary condition.  Thus the solution could aLso have been 
obtained by transposition of the isotropic beam solution. 

EXAMPLE OF A PLATE OF 12 0RTH0TR0PIC IAMIKAS V/ITH SPIRAL ORIENTATION 

Consider a 12 layer laminated plate of spiral orientation. Each lamina has 
thickness h and is oriented such that the principal elastic axes are at either 
+ 45° or - 45° with the coordinate axes. Let the reference surface be between 
the 6th and 7th layers as  shown in Figure 5.6. 

Layer    1      +^5 

•J£ 
^ 
-^ 
+^5° 

-45c 

+^ 
-45c 

^5C 

10 -45c 

11     +k3 

12 ■^ 

^ 

^ 
12 

t 
z 

 1    3h 
kh 

5h 
-6h 

} .- 
2h 

':3h 
kh 

5h 

6h 

Figvire 5-6 

In this example let the four independent parameters be E - E,  k - 1.2, 
7^= 0.3,   and X = 0.h2.     The principal elastic constants are C^ = 1.1211, 
C22 = 1.3^5E,   Ci2 - O.hOkE and C66 = 0.471E.     The elastic constants C^j for the 
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rotated axes are computed using Eq (l.12), 

For a Oamlna at + h50 

1.29 O.35 O.06 

0.35 1.29 O.06 

0.06     0.06     O.kl 

CiJ-E Cij-E 

For a lamina at - kj0 

1.29      0.35 -O.O6 

0.35      1.29 -O.O6 

•0.06    -O.O6 0.41 

The coefficients A^,,  D^, and D^ are computed from Eq, (l.30) as shown in Tlable 2 
and may be summarized as follows: 

15.48 4.20 0 

AiJ = Eh 4.20 IS.Ua 0 

0 0 4.92 

0 0 -0.36 

M = Eh2 0 0 -0.36 

-0.36 
1 

-0.36 0 

> 
185.76 50.44 

1 

0 

DiJ " ^ 50.44 185.76 0 

0 0 59.08 

With A-y, Dji, and Di« known, B*,., b^j, Tji ',  and \S}-'  can be computed frcm 
Eqs (2.11), {2.13), (2-20), and <2.21%  J 

0.0697 -0.0189 0 

B1J  " Eh 
-0.0189 0.0697 0 

0 0 0.203 

0 0 -0.073 

\r* 0 0 -0.073 

-0.018 -0.018 0 

61 



(1) 
ij 

1 
h 

O.O83    0.000+  ±0.012 

0.000+   O.O83   +0.012 

±0.003   ±0.003   O.O83 

(i) _ 
ij 

Eh 

+0.001 +0.001 -0.119 

+0.001 +0.001 -0.119 

-0.007      -0.007      +0.009 

In the case where there are two signs, the upper sign is for an odd numbered 
layer and the lover sign Is for an even numbered layer. 

Three cases of the rectangular laminated plate strip for this spiral 
orientation have been computed: 

(1) Cylindrical bending by a unlfom moment. 

(2) Uniaxial extensions: Since the eccentricity, eccn , is zero 
x 

for this particular location of the reference surface, no shifting of 
the applied force is necessary. 

(3) Unifonnly loaded plate strip. 

All the results are obtained by substituting these numerical values into Table 1. 
The final results are summarized in Table 3« Plots of the stress distributions 
are shown in Figure 5-7 and Figure 5'8. 
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üable 3:    3-jmiaary of the Rectangular Plate Strip Problem 

Case Description Boundary Conditions 

Cylindrical Bendins 
by Uaifom Moraent 

M M 
v(o) = v(L) = 0 

uo(|) - 0 

Ct.     ^ ^•7 
—^ 

3 
Uniajcial Sxtension 

(ecc„    = 0) 
X 

IVT 

•N w(o) = w(L) = 0 

u (c) ■ 0 o 'T.    J. -J 
^ Unifcmly Loaded 

Plate Sirip 4=con3t. 

a      1 w(o) = W(L) ■ 0 

uo(i)  - 0 
"i 
-J 

NX(X) M (x) xv   ' uo(x) w(x) 

1 0 M 0 M           /Lx.x"^ 

l85.763hJ - 

- N 0 11        3C 0 i5.W3h x 

3 0 | (1* - X2) 0 

a      /Lx^ 

Ii5.7ö3hj 

Lx3     x\ 

Ny(x) N    (x) xyv   ' My(x) Mxy(x) 

i 0 0.00194 ^ n +o.27ai 0 

i 0.2? IN 0 0 -0.023Nh 

■3 0 -O.OOlOq (Lx-x2) 0.135(1 (Lx-x2) 0 
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Table 3:  (cont.) 

r                                        a W                                       I x                                              ( 

1  £}       „1   7 n nnmT^ + i   on      1                          I 

185.76^ L             ^             ÜJ 

2 0.075 | 

3 äli^r + 0.00332 + 1.29 |1 
371.52h    L                                   J 

y 

1 
135.76^' 0-O033t-,O':bh] 

1   2 0.0I1-7 | 

3 
q(Lx'x j, f + 0.00332 + 0.35 rl 
371.5^ L                                  ^J 

In the case of 

two signs (+ or 

+), the upper 

sign is for an odd 

numbered layer 

and the lower sign 

is for an even 

numbered layer. 

T    (i)                                      1 
1   1 , . _M.,   ,_ In rnftW + n n^ ^ '                           1 

l85.76h   [                                   J                           | 

2 
11                                                1 

+ 0.003 |                                                f 

3 ^(to-x2) T 0.03633 + 0.06 O 
371.5^1                                 j 
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Stress Distributions for 45° Spiral Orientation 

layer 
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3 
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5 
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10 

11 

12 
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xy 

Figure 5.7    typical Stress Distributions for Cylindrical Bending 
by a Uniform Moment and Uhifomly Distributed Load 

1 

2 

3 
k 

5 
6 

7 
8 

9 
10 

11 

12 

H 

c 

xy 

Figure 5.8 Typical Stress Distribution for Uniaxial Extension 
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6.  DEFLECTION SURFACES FOR PRESCRIBED EDGE LOADS 

In the absence of transverse loads (i.e., q = 0), the ccnrpatibility and 
equilibrium equations, Eqs (3.12) and (3'13)j are both satisfied identically if 
U and v are assumed as: 

2     2 U = cox + c^ + c2xy 

2 J   2 J w = gox + g^ + g^y 

(6.1) 

where the c^ are coefficients which describe the form of the stress function and 
the gi are coefficients which describe the shape of the deflection surface. 

The introduction of Eq (6.1) into Eqs (3.11) and (3.10a) leads to the follow- 
ing expressions for the in-plane forces and bending moments: 

N = U,  = 2c, 
x  'yy   l 

N = U,  = 2c 
y   'xx o (6.2) 

N  =-U,  = - c0 xy   'xy    2 

M = 2c, b,.. + 2c b x    1 11 12 " C2 bl6 + 26o ^l + 2gl d12 + ^ dl£ 

My = 2C1 b21 + 2Co b22 " C2 b26 
+ ^o d12 + ^1 ^ + '^2  d26       (6-3) 

Mxy = 2cl b6l + 2co b62 " c2 b66 + ^o dl6 + ^l ^ + ^2 *t6 

Substituting the values of the ci from Eq (6.2) into Eq (6.3) and writing the 
resulting equation in matrix form, one obtains: 

M « bN + 2dg (6.4) 

where 

(6.5) 
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From Eq, (6.4), the deflection surface coefficients may te expressed in terms 
of the bending moments and in-plane forces. 

g->f|M-W| (6.6) 

where the flexibility matrix, f, Is related to the stiffness matrix, d, by: 

f = d-1 (6.7) 

The shape of the deflection surface for several cases of edge loadings will 
now be considered. 

UNIFORM TENSION 
Let all force conrponents be zero except NJJ,  then the g^ hecome: 

So = " i Kx [ f11 bll + f22 b21 + f16 b6lJ 

«1 = - I Nx [ fa2 bll + f22 b21 + f26 b6l] (6-8> 

82 = " i Nx [ f 16 bll + f26 b2l + f66 b6l] 

and the deflection surface is given by: 

W = " I «x   [(fllbll + f12b21 + fl6b6l) x2 +  (f22bll + f22b21 + f26b6l>  ^ 

♦ (fl6bll + f26b2l + f66b6l> **] (6-9) 

It mvist be recalled that all forces are applied at the reference surface and 
that it may be possible to change the form of the deflection surface by changing 
the location of the reference surface; that is,  one of the coefficients of x^, 
y^,   or xy may be made to vanish by a particular choice of the reference surface. 

PURE SHEAR 
Assume that the only non-zero force ccraponent is N^.    The displacement 

surface coefficients are given by: 

«o = " i Nxy   Pll bl6 + f12 b26 + fl6 b66l 
L J (6.10) 

Si - " I V [fl2 vl6 + f22 b26 + f26 b66] 
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S2 " i V [ f^ bi6 + f26 b26 + f66 b66] (6-10> 

and the displacement surface Is 

w " " i V   [(fllbl6 + fi2b26 + fl5b66) x2 + (fl2bl6 + f22b26 + *& ^ ^ 

*(fl6h2£ + f26 b26 + f66 b66) ^J <6'11) 

As in the previous case, one of the coefficients of x^, y2,  or xy may be made 
to vanish hy an appropriate choice of reference surface. 

UNIFORM BENDIHG ABOUT OME AXIS 

Let all of the force ccotponents be zero except Mg which is assumed to be 
constent. Then, the values of the g^ are given by: 

go 
1 

= 2 fll 
M 

X 

gl 
1 

" 2 f22 
M 

X 

g2 

_ 1 
= 2 f2JS 

M 
X 

(6.32) 

and the deflection surface becomes: 

w = K[ fll x2 + f12 y2 + f16 ^ I t6'13) 

In this case, the only term which can possibly be made to vanish by changing 
the location of the reference surface is f^. The other tenns must exist for all 
possible choices of the reference surface and for all possible orientations of the 
laminas. 

PURE TWIST 

Assume that the only force component which exists is Mjjy,   then the g*  take on 
the foim: 

6o " I f16 Mxy 

ei-if26Mxy V-W 
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The deflection surface is given Toy 

w = i V [ fl6 x2 + f26 y2 + f66 ^] (6-15) 

The only terms which might be made to vanish in this case are t^ß and/or fjjg. 
Both the location of the reference surface and the orientation of the laminas will 
affect the existence of these tenns. 
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7-  BENDING OF ORTHOTROPIC LAMINATED PLATES 

As remarked in Section h,   the general deteiminative Eqs (3.12) and (3.13) 
governing the behavior of laminated plates can be specialized in certain Instances 
of lamina orientation. In the particular case of a plate vith pairwise orientation 
whose layers are 90 degrees relative to one another, the in-plane and bending 
effects are uncoupled.  In this case a solution of Eq. (3.13)* now in the special 
form of Eq (^.29), may be obtained by the Navier method (see for example. Reference 
(23)). Recalling the form of this equation: 

D,, w,    + (2Dno + huts)  w,    + D00 w,    ■ <l(x,y) (7.1) 11 'xxxx  x 12   66' 'xxyy  22  yyyy  »^ »<" M / 

if the load q(x,y) is expanded in a double Fourier series 

<l(x,y).  V ) c^sin^sin^ (7.2) 

n=l m=l 

then the solution foim of w(x, y) for the simply supported plate may also be taken 
as a double Fourier series 

n=l m=l 

w(x,y) - N   ) w^ sin ^ sin 2|Z (7.3) 

where a and b are the lengths of the sides of the plate.  The unknown coefficients 
wmn may be found by substituting the two series back into Eq (7.1) and equating 
the like terms.  The equation is satisfied for every value of n and m if 

 Tim  

«' f Dii V ^12 + ^66) ^ + D22 nj I a abb 

(7A) 

The complete solution of w(x,y) is then, 

»^„ Qwx _._ mny sin   sin    . » 
/       N      J-     \        \ *nm a    b  tn r\ nx,y) =-5   >      ;  ij rr^ u (7.5) 

■H. SS. ™ 

l    V     V  ^22- —r     ' >  r  

D^  \ + 2(0^ + 2D66) ^ + *22\ 
a abb 

for the special case of a unifoim load q = q0,   q^^ is given by 
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16  q. 

it mn 

m 

n 

1, 3, 5, 

1, 3, 5, 
(7-6) 

The moments and stresses are calculatecL from Eqs (3.10a) and (S.lSa). In- 
plane forces which are found from the solution to Eq (i.28) may he superimposed 
as a separate problem since the differential equations and boundary conditions 
are uncoupled for this particular orientation of the laminas. 

EXAMPLE OF A SQUARE PLATE OF 13 LAYERS WITH PAHWISE 
90 DEGREE EQUIAMGULAR ORIENTATIOK 

Consider a 13 layer laminated plate of such an orientation that its behavior 
can be described by Eqs (4.28) and (4.29). Each lamina has thickness h and is 
orientated such that the principal elastic axes coincide with the coordinate axes. 
The length of the sides is a. Let the reference surface be the middle surface 
of the seventh layer. 

90v- 

90c 

90° 

-5-5h 

-4.51^ 

•3.5* 

-2.5b' 

•1.5» 

oL 

8  90c 

io 90c 

ii 

12  90c: 

13 

,-0.5h 

£3- 
0.5h 

1.5h 

2.5h 

-6.5h 

3-5h 

4.5h 

5.5h 6.5h 

1 
z 

Figure 1.1 

Let the four independent parameters be the same as that of the example in 
Section 5, E « E, k = 1.2, a» =0.3, and X = 0.42.  The C^ are given by Eq (l. 14). 
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for an even ma nbered layer for an 

1 1.3^5     O.kok 0 

Üij=E O.hok      1.121 0 ÜiJ=E 

0              0 0.V71 

1.121 O.hok        0 

o.hok     1.345  0 

0    0   0.471 

The coefficients Aij and Dj* are given by Eq (l.30). Dj* is zero for this 
orientation. A convenient form such as Table 2 of Section 5 nay be used for the 
computation of these coefficients. The results are 

15.917 5.252 0 

AiJ = Eh 5.252 16.141 0 

0 0 6.123 

221.028 73.966 0 

DiJ= ^ 
73.966 230.455 0 

0 0 36.232 

Knowing A^j, the Bj* may be found. 

0.0704   -O.0229 

B -±- 
ij  Eh 

-O.0229    0.0694 

0        0 

0 

0 

0.1633 

The governing differential Eqs (4.28) and (4.29) become 

^r-   I   0.069k  U,    + 0.1175 U, _  + 0.0704 U,    I 
Eh s      'xxxx       xxyy       yyyy I 

Eh3 [   221.028 w,^^ + 492.860 w,^^ + 230 A55 w. 

= 0 

yyyy ] ■ q(x,y) 

Since these equations are uncoupled, their solutions may be taken independent- 
ly. Only the bending problem will be considered here. If the plate has a unifoim 
load q. = q0)   then the solution for w(x,y), which is given by Eq (7.5) and Eq (7.6) 
is 
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CO 00 

iß a    V V /        \ O / / a a 
w(x,y;  = -r-r—^     ^ Z_.  5 3-3 c 

it a Eh^    n=l m=l 221.028 n-'m + ^92.860 mJn'3 + 230.^55 nm? 

sin sin -=-» 

(n = 1, 3, 5 ; 

The mcments axe given ty Eq (3.10a) 

- (221.028 w,  + 73-966 w, ) Eh3 

m = 1, 3, 5 ) 

M xx yy' 

M = - (73.966 v,^ + 230.455 w, ) Eh" 

M  = - (n2.k6k  v,  \  Eh' xy   \      'xy / xy 

The stresses are given by Eq (3.10a). Since the in-plane forces and t 
are zero, these equations reduce to 

( 

(i) 

I 11  'xx  12  'yy I 

(*> - - z [ C <*> v,  -^C^v,  1 
r L  ^      ^     22      yy 

T  ^ . - 2Z ^ v, 
xy 66   'xy 

The deflections and the mcments at the center of the plate, x = ^, y = ^ 
are summarized below 

teims in series 

(nm) V Mx My 

11 

k q   a 
0.0000176    0 i 

EhJ 
O.O513 qo a2 0.0530 qo a

2 

11,    13,    31,    33, 
51,    15 

k 
q    a 

0.0000172    0 , 
Eh"3 

O.OU66 qo a2 0.0481 q^j a2 

Additional tezms are needed to obtain more exact values for the moments 
because their series representations converge slower than the series representa- 
tion of the deflection. 
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The midspan stresses are 

z( 5-2) (.0000766) 

(D 
< 

2 
na a 

z( =-2) (O.OOOO879) 
v   h^ 

for odd numbered layer 

for even numbered layer 

(i) 

2 
na q 

z( ^-2) (0.0000879) 
h-3 

«a a 
z( g-2) (0.0000766) 

V.   h^ 

for odd numbered layer 

for even numbered layer 

A plot of these stresses is shown in Figure 7.2. 

Z 
Z 

z 

7 ? 
7 

f 

Figure 7-2 
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8.  APPLICATIONS OF THE PERTURBATION METHOD OF SOLUTION 

It should be recalled that the perturbation method of solution, as described 
in Section h,   is applicable when the squares, products, and higher powers of the 
perturbation parameters are negligibly small. 

The perturbation method of solution may be applied to problems in which the 
boundaries are not rectangular with little more difficulty than arises in applying 
it to problems in which the boundaries are rectangular.  This situation arises 
because the differential equations for the first approximation and for each 
correction term are of the same fonn as the equations for Isotropie plates.  Hence, 
any problem which has been solved for Isotropie plates can be extended to laminated 
plates by the perturbation method. As an example of a problem for which the 
boundaries are not rectangular, the solution for a unifonnly-loaded laminated 
circular plate with clamped edge is indicated below.  An exact solution can be 
obtained for this case, so that a comparison can be made between the exact solu- 
tion and the perturbation solution.  In addition to this solution, the perturbation 
solutions for rectangular plates simply supported on all four edges or simply 
supported on two opposite edges and clamped on the other two edges are also 
indicated. 

CLAKP3D CIRCULAR PLAT3 

From Sq (4.15), the differential equations for the first approximation are 
the same as those for Isotropie plates 

V*-.r    -i 
o  D 

^ U = 0 

The boundary conditions for a clamped edge will be taken to be; 

=    0 

(8.1) 

lr=a r=a 

- U.     + ^ö U, N =0 

r=a I r=a 

For a unifoim load,   the solutions  of these differential equations  in polar 
coordinates are:    (see,   for example.  Reference (25;  ) 

w      =    ^o     /   2 2v2 
o 7TK (a    - r  ) OTD 

(8.2) 
U      =    0 o 
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where q      is the magnitude of the load and a is the radius of the plate. 

When Eqs  (^.16),   Cf.l?),   (4.18),   and (4.19) are transformed into polar 
coordinates,   the following equations are obtained: 

k h 
V    UJtll =     ^7    Ui22 

it- k 7  üil2 =    v  vi21 

% 
BD 

3% 
HD~ 

(8.3) 

V     vnii   =     V   wnll 1% 
BD" 

v    Ii:L2       BD 

^   wn66   "    V^n6g   =   U-VD)g 

^    wn22 
4 3(1o 

V   wn2l   =   BD- 

(8.4) 

The renaining equations are all of the fom     V   (U,w) = 0, with their solutions 
identically equal to zero.     The solutions of the ahove equations are: 

U £11 
U Ä22 

%      i  2        2v2 
5I2D    (a    " r ) 

n ^     /   2 2v2 
Ui66    '    255D (a    " r ) (8.5) 

Ui32 
U, 121 

3<1o    (^      2^ 
512D (a " r ^ 

nil 

3qo    /  2        2v2 
Wnl!    =    512D (a    " r ) 

w    * nl2 

'n66 

/  2        2v2 (a    - r ) 512D 

wn6?   - ^ - ^D) 5^D <a' - ^ 
qo     /_2       _2X2 

(8.6) 
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Therefore,   the complete second approximation Is: 

* " 5?D (a2 -  r2)2 f ! + (nll + ail + a22 
+ -21) 

(8.7) 

U -   **SK (a*1 - r ) 

1 1-3;D   1 + nll B + (n66 + n6S> (—8^) J 

[ <66-<4a + 42)l-^ + ^i)i] <8-8) 
An exact solution for the uniformly-loaded damped circular plate may be 

obtained by recognizing that the following forms of solution satisfy boundary 
conditions: 

„    / 2        2v2 w « C^ (a    - r ) 

U = C2   (a2 - r2)2 

(8-9) 

Tvro simultaneous equations for the unknown constants C-, and Co are obtained by 
substituting the above foms of solution into Eqs (3« 12) and (S-IS). Bie following 
solutions are obtained when the constants C^ and Cg have been deteimined: 

w='5~ L a J (8#10) 

(a2 _  r2)2   f3B22^2B12+B66)+3B11| 

y _ % (a2 _ ff    r3b12 ! ^11 + b22 -  2b66)  + 3b2l| 

where. 

A   =    [sBjjg + (2B12 + B66) + 3^ J|^    Sd^ + 2(dlj2 + 2^) + 3^] 

" [3*12+ <bll + b22-2b66)+ 3*21 ] 

When this exact solution is expressed in teims of the perturbation parameters 
and the division is expressed in series foim,  the perturbation solution can be 
seen to consist of the first teims of the exact solution. 
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Ihe solution for the simply supported circular plate can be obtained in a 
similar manner provided due care is taken in properly satisfying the boundary- 
conditions . 

SIMPLY-SUPPORTKD RECTANGULAR PLATE 

For the present, the load will be assumed to be sinusoidally distributed; 
that is 

1- % 52 slnSZ sin — sin (8.11) 

where the coordinate system is as shown; 

.*. x 

This will serve to illustrate the method, and will indicate that the solution 
for any load distribution may be obtained by expanding the load in a double 
Fourier series. For this load distribution, the solution to the first approxi- 
mations, i.e., the Isotropie case is: (see Reference (25), for example) 

q a 
o 

it D (l + a ) -2 ^ r ^ ? (8.12) 

U. 

where a ■ a/b, the aspect ratio. 

Inserting these relationships into Eqs (l+.lß), (1<-.17), (*»-. iß), and (4.19), 
the following equations are obtained: 
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Vk Vi = ^ H«a2 
%a' 

D  (1 + CC) 
ITS   ^ ? Bin ^ 

^7   u. '466 

2q   ac 

-0 ^2   -Inp.inÄ 
D (1 + a")' 

*    "JLV D (1 + a2)2 a b 

^^ T^   Bin^sin^ "X21 
D (i + cfy 

k 1     h ^a 

D (1 + a'') 

3 

p-^    cos — cos $2 c\«: a b 

^Hl26-5 V Hl6i- %a cos 22 cos 22 
D (1 + a2)2   "     a    ^ b 

(8.13) 

and 

f"»? 

r4-. W " -  V1* "alS " 
*». a 
 ■—o 5    cos — cos r»- 
D(l + a2)2 a b 

X7    w    » = 2 %     22   S±n ^ sin ^ 
D (1 + a2)2 a b 

V   w„66 " V A    A ^7   wr.^ =  D    A'A        sin 22 V    n66       D(l + a
2)2 a F^f 

V   wn wn26 ' -   V  vn2? = D (l + °2)2    cos ? C08 ? 

(8.1U) 
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The  remaining equations are all of the fom ^r^(U,w) = 0, with their solutions 
identically equal to zero. 

The ahove equations are of two types: 

(1)    74 (  ) - ^ sin JS Sin ZZ 

(8.15) 

and (2)      V (  ) = k2 cos Ö cos ^ 

The solutions of these two  types of equations are (see Reference (25), for example): 

(1)      (   )=7^¥ sin?sin? 
^*k 

(8.16) 

« (1 + a )    „^,4    „.2,4 

where tarn 

(m
c- l)(nc- 1) 

Therefore,   the complete second approximation is; 

2 
1 + (n,, + n *) ^r^ + n «       ix 

11       *'    (l + a
2)2       ^ (1 + a

2)2 

(8.17) 

^D(l+^)2(    I 

+ ^iTa2)2    (n^ + ^ + ^22 + n2|) 77^2]   -^ ? ^ f 

1     a ; n-2.U   m=2.1* J 
+ (l + O 

fill 



U ' «WaVU (/L1+
 ^2+ 2i66)a2" ^ *2lKl + alf) J Sin ? 

ni=2,ij. n=2,k J 

sin 22 
o 
(3.13) 

RSCTAKGULAR PLATE IVITH TWO OPPOSITE 3DGES SIMPLY SUPPORTED 
AIJD THE OTHER TWO  EDGES CLAMPED 

As  in the previous case, a sinusoidal distribution of load will be assumed. 
For the coordinate system as shown. 

ni'ii'i 

b 
2 

b 
2 

a 

-*- x 

The equation for the load is: 

q = (^ sin jp cos |2 (3.19) 

To simplify the presentation, the arrangement of the layers will be assumed 
to be symmetrical with respect to the middle surface of the plate. An extension 
to a general arrangement of the layers can be readily obtained from the solution 
given. 

The solution is assumed to consist of a particular and a homogeneous part; 
i.e., w0 = wi + Wg. The particular solution is chosen so as to satisfy the load- 
ing condition, whereas the homogeneous solution is such that the sum of the two 
parts satisfies the boundary conditions. The particular solution is taken as 
that for the case when all edges are simply supported: 

% 
1   i^Dd+cO —z ^ f - ¥ (8.20) 
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where a « a/b, the aspect ratio. 

For symmetry with respect to the x axis, the homogeneous solution can be 
shown to Tse (see, for example. Reference (25) ) : 

w = f A Cosh f2 + B 22 Sinh 22 1 sin ** (8.21) 

where 

A - ^   2      §SiDh% 
""TT (l + a

2)2 sinh^Cos^ + ^ 

B = 
<ioa   a      CoshS 

rt4 D  (1 + a2)2 Sinh 2- cosh ^ + 2- ax "" aa aa 

Therefore, the solution for the first approximation is: 

w = Q sin ^ [cos 22. K (^- Sinh |r Cosh 22 _ SZ Cosh ^ sinh ^l     (8.22) 
o       a |   D    aJL o* a   a     aj> a 

where 

and 

^ a     i 
Q ■ -ff   5-5 

n4 D  (l + a2)2 

K 2  
Sinh § Cosh I; + 2_ 

Because of the simplifying assumption regarding symmetry with respect to the 
middle surface, the only differential equations for the corrective terns which 
need to be considered are Eq (4.lS).  Substitution of Eq (8.22) into Eq (^.iß) 
leads to the following equations when the functions are expanded in suitable 
trigonometric series: 

k *    . 
V   wnll=Ci78in 

a 

where 

—      cos -t - K     ^       cn        cos ^-1 
L n-1,3 

n-l. 2 

c(nll) .(.!)    2    r S^o.^    Cogh2 fel 
n I« (l + n2a2)2 ^J 

86 



vSlo = ^4     ^ ^nl5) sin ^  fa     7       d(nl6) .,„ ^r in ^  la 
ft nl6      -a.    _ =m s.n—   .a    ^       d— 8in   b 

ffl-2,4 L       na2j4 

+ K     \ e(n^) n^ 

n=2,4 J 

where 

Cni =^-? 
Jt(m    -  1) 

U(n    - 1) 

e(ni6) . (    J " HjmaL      .i-^a2 r   , |. Sinh IJ - ^ 
[ir(l + n'a^)    l + n2 a2 

V4 wn66 = (1 -»J  * h *i* f  \a2 ^ F " K     V c<n66) cos ^ 
a. L 0 ^-> n -1) 

n=l,3 
where 

.(»66) _ ,   ,^     ön3^ c(n66) . (-^     3n3^ ^ 

k 

a     m=2,!!.,6 ^2,4 

- K      > e^6) sin BEZ" 
D n 

n=2,lf 

where 

e(n26) km 

it(m    - l) 

^6) - (-1)2 S-^       2n 

.«(n2 -  1), 

OT 



Jn26> = (-l)2 knee       /i - 3n   a2 „ n       - x 
 p    p    I  p—p-   Cosh ^r Slnh ^r - ^J 
(1 + n   a2) Vi + n2 a2 » »     ^ 

L n-1,3 

(n22) n«y cv       '  cos -r*- n b 

where 

sto)  =  -  (-!)"1 I"       8na2 

[«(1 + n   a 2^2 Cosh    » 

The solutions to these equations,  which are obtained in a manner similar to 
that used in the first approximation,  are: 

w .,  = Q sin — nil a (i+oO 
2^2 cos ? - K \ 

/ 

n=l, 3 

.(nil) 

(1 + nccO 2-2^ cos *¥ 

L ..  (|- Sinh |- Cosh ^ - 2Z Cosh 4- Sinh 2Z) nil    aa aa a       a 23 a 

where 

nil 

V               2=i  i« c(nii) 

{l + cc*)2 ^=1,3 (1 + n2«2)2 

Sinh I; Cosh §5 + |j 

n 16 ^Q 

K     \ 

y 
m=2,it- 

(nl5) j^tx 
m a 

*- n-2, 

(nl6) 
ad n  n«y 

,5  .  j! ^2N£ 
sin    b 

k    (mc + nca£)' 

.(nlß) 
n 

/ ,   2 "    2 „2x2 —' (m    + n   a  ) 
n=2,U ' 

sm 
iwy 

Lnl6 % Slnh h Co8h ? - ? Cosh % Sinh ?)] 
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where 

I ? (-0* n a2 d^16) 
s 8 V-1 

nl6 
n=2,4 (m2 + n2 a2)2 

K (-1) 
n=2,4 

aaen 
(m2 + n2 a2)2 . 

Sinh |- Cosh |j f |- 

w. n66 

where 

(1 -VD) Q sin a    l(l + 

.(«66) 
-^ cos fZ - K \ n 

H.  ,    (1 + n^a 

Ln66 % Sinh fe Cosh ? " f Cosh IJ Sinh «) 

^cos£? 

a" 
n-l —   nacn 

un66 

. (n66) 

 g-? - K     ) (-1)         3—p-5 

Sl.h ^ Cosh I; * % 

W n26 

«0 
^—i 

kQ,     ) 

me2,4 
Ü 

- K 

n=2,U 

m 

3 „(»26) 
nutx \ n 

a        l^>u    (m2 + n2a ^^^ 
n=2,'f 

.(1126) Ze ' 

fn,2 !  n2 «2N2  8in ^ 
■)' 

" Ln26 % Sinh % Cosh ? " f Co8h fe Sinh f) 

where 

bn26 
L   n=2j 

(-1) *= n \<i n 

(n.2 + n2 a2)2 ' K    ^ ^  im* + J ^f 
Sinh ^ Cosh § + ^ 

Wn22ssC1 

r     ^ 
sin 2^     _2L_ 

a    L (1 + a ¥ cos 3*-K     > 
,(n22) 
n 

n=l,3 
(l + n2a2)2 

cos nnjr 

" Ln22 % Sinh S CoBh ? " ? Cosh S Sinh ?)" 
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where 

LJn22 

a' 
 5-5 - K 
(l + a2)2 

(-1) 2    n  
(l+n2a2)2 

Sinh IJ Cosh ^ + ^ 

It should he recalled that the second approximation is ohtained hy summing 
these  separate solutions times the appropriate parameters: 

w = wo + nilwnll + nl6wnl6 + n^w^ + n^v^ + n^w^ 
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9-  OPTIMIZATION OF LAMINATE CONFIGURATION 

The question of obtaining the optimum orientation of the layers in a structural 
laminate can be considered from several vievpoints  There is the question of 
whether to optimize for minimum deformation (or minimum volume change in a pressure 
vessel), for equal stress in two directions, for maximum strength (which involves 
the question of a valid theory of failure), or for some other stress or deformation 
condition.  In some cases two conditions may be satisfied by the same orientation, 
but it is not evident that this should be true in general  Then, the particular 
application for which the optimum structure is to be determined may be classified 
as to whether the stresses are statically determinate, as are the membrane stresses 
in a thin-walled pressure vessel, or whether the stresses are statically indeter- 
minate, as in the bending of a plate. Thus, a general discussion of optimization 
would become quite involved.  Only one aspect of the problem will be considered 
here. 

The question of optimization for minimum deflection involves only a study 
of solutions to the differential equations presented in the first part of this 
report. This discussion of optimization will be limited to optimizing for 
minimum deflection in plate problems. Two classes of problem will be considered: 
the cylindrical bending and extension of long rectangular plates, and the bending 
of rectangular plates simply supported on two opposite edges. 

CYLINDRICAL BENDING OF LONG RECTANGULAR PLATES 

As shown in Section 5, in the cylindrical bending of long rectangular plates, 
the lateral deflection may be expressed in the following form: 

w(x) = i 5- F(x) (9.1) 

D. 11' 
11   A^ 

where F(x) may be obtained from the corresponding problem for the deflection of a 
beam. Similarly, the extension of a long rectangular plate may be expressed in 
the following form: 

u (x) = i 5- G(x) (9-2) 
(D^)2 

All" D^ 

It can be seen from the above expressions that in order to minimize the 
deflection or extension in the plate, it is necessary to maximize the expression 

(D *)2          (D *)2 
D .. -r  or A^., g-  , respectively. For orientations which are 

symmetrical with respect to the middle surface of the plate, the quantity Djf is 
zero. Therefore, it is obvious that the optimum orientation will be one which 
is symmetrical. For symmetrical orientations, the deflection or extension is 
minimized by maximizing the quantity DJJ. or A^, respectively. 
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Fran the definitions of the quantities DJJ and An: 

(9-3) 
n 

Aii -  I    üiik) ^ " Vi)' 
k=l 

it can be seen that in order to maximize these quantities, the quantity Cn must 
be maximized for each layer. From the definition of C-Q: 

OJ, - C^ cos Q +  2(0^ +iC,6) sin
2 Ö cos2 6 + C22 sin 9 (9-^) 

the conditions for maximizing C^ ^a:n ^ fo\md to be: 

sin e = 0 ,    when    cii^ Ci2 + 2C'6      and"  Cll^ C22 

cos 6 = 0 ,    when    C22 ^ Cll  and  C22^ C12 + 2C66 (9.5) 

+ 2ß    (C^ + 20^) - C^        when    C^ + 20^ > C^ 
tan Ö =  rr; T-RS \   _ r   > 

^12 + ^66J  C22        and    C^ + 20^ > C^ 

The optimxar. orientation depends on the relative magnitudes of CJJ and Cgg. For 
cll = c22 ' 'tlie optimum orientation is 45°, as would be expected. 

RECTANGULAR PLATES SIMPLY-SUPPORTED ON TOD OPPOSITE EDGES 

From the solution given in Section 8, the maximum deflection of a sinusoidally 
loaded rectangular plate simply supported on all four edges can be shown to be: 

max     Ä
4D(l+a2)2 L 11       11   (1+a2)2       ^(i+a2)2 

2 (9-6) 
(1 -yn) a2 U     1 

where a = a/b is the aspect ratio, D is the larger of Du or D^ + 2Dg5 or D22> 
and the n^j are small positive quantities defined by: 
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1  
Dll nil = 1 - D 

1  D^ n22 = 1 - D 

n-l    2 
D66 

u66  1  1 -Vr .  D 

M- 
dll 

+ 

IT 
Dll 

nil = 
d
12 

+ D12 

n2* = 
d22 

+ 

"D" 

D22 

n62- 
2 d66 

+ 

"D" 

D66 
1 - ̂ D 

(9-7) 

From this solution, it can be seen that to minimize the deflection the 
quantity D should be naximized and the n^j and the n^> should be minimized. These 
two effects are not entirely independent since a change in orientation which de- 
creases the n-n will also decrease D. However, since#for arrangements which are 
symmetrical with respect to the middle surface the nij will be zero, the optimum 
arrangement will be one which is symmetrical with respect to the middle surface. 

For symmetrical arrangements of the layers, Eq (9-6) can be written as 
follows (assuming that Du > Dpp): 

when D^ > (D^ + 21)^), D - D^ 

VU  1  [ . , 2 Dll-^12+2D66)   a2   , Dil-D22   a^ 

:i + a
2)2L Vmaxa^ (l + a
2)2L1+     Dll  "   (l+'a2)2'  Dil   (l+a

2)2 

(9-3) 

when (D^ + 2D66) > D^, D - (D^ + 2D66) 

^2)2[ w        ,    L      V l_f1 + i^ll    _^_+il^2_al_ 
max        k,^    Z TZ    T    TTTT^al O /,^ _2X2 D        /,._2N2 «(D^+aDgg)    (l+aTL " (l*acr u       (l+ac)' 

(9-9) 

For long plates (a = 0), it can be seen that the first of these equations reduces 
to one similar to that given in the previous discussion of long plates, whereas 
the second equation is different in form since two terms will be retained. From 
the previous discussion, it should be realized that the maximization of the Djj 
depends on the relative magnitude of C^ a^d C^ + 2C66 (^11 can always be defined 
to be greater than Cpp). 

Rather than attempt to continue in general teims, a series of numerical 
examples will be studied. First, consider the material in the layers to be such 
that Cn ■ 1.0C, C-^ + 2C66 " c22 = 0.8C.  (These values are chosen so that the 
n^j will be less than 0.2, and their squares, products, and higher powers will be 
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negligible.) Hiese layersjmay bejorlented so as to maximize Cn (thus maximizing 
Du) or so as to maximize Ci2_+ SCgg (maximizing Dj^ + SDgg)- When, the layers are 
orientated so as to maximize C^i (i.e., ö * 0), it can be shown that 

C^, - 1.0C 

C^ = 0.8C 

When these same layers are oriented so as to maximize C12 + 2^66 (i,e'> e " ^3°), 
it can be shown that: 

ein - 0.85c 

Ü12 + ^66 " 0-95C 

S22 = 0-85C 

For the first case (ö ■ 0°), Eq (9.8) becomes; 

k 

max 
1C 77 777^1 (i + a

2)2   0  irTWJ (9.10) 

For the second case (ö =« '«■S0), Eq. (9.9) becomes; 

k 

max 
^1 ^25      [^^20^*0^02«   1 
ro     (l + a2)2 L        (i+a2)2     (i + a2)2J 

(9.11) 

where 

D-C^ 

Kext,  consider the material in the layers to be such that Cyg +_2C66 ■ 1-0C, 
Cm ■ C22 • 0.8c.    When these layers are oriented so as to maximize Cn (i.e., 
0 ■ ^50h  it can be shown that: 

Cll " 0-9C 

C12 + ^66 " 0-7C 
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C22 = 0-9C 

When these layers are oriented so that Cj^ + 2Cgg is a maximum (i.e., © - 0°), 
it can be shown that: 

'11 O.SC 

C12 + 2C66 

C22 = 0.3C 

1.0C 

For the first case (© ■ ^5°), Eq. (9.8) becomes: 

^  7D  (l + a2)2 L        (l + a2)2J 

For the second case (© = 0°), Sq. (9.9) becomes: 

k 

w mnv 
^o a     l   t 1+       0.2  + 0.2 a^ 1 
**D     (i + a2)2«-   (l + a2)2  (l + a2)2J 

(9.12) 

(9.13) 

As an indication of the effect of the aspect ratio, a , the maximum deflection 
has been evaluated from Sqs (9.10), (9.11), (9-12), and (9.13) for the limiting 
conditions a = 0 (i.e., the long plate) and a = 1 (i.e., the square plate). The 
results can be summarized as follows : 

W-/>D 

a a 0 a » 1 

Dll 
maximum 

Di2 + ^66 Dll 
D12 + 2D66 

cll - ^oc 

c12 + 2C66 = 0-8C 

C22 = 0.3C 

1.0 

(© = 0°) 

1.16 

(© = ^5°) 

0.28? 

(e » 0°) 

0.276 

(© - ^5°) 

C^ = 0.8C 

CI2 + 2C66 = ^^ 

C22 = 0.8C 

1.111. 

(e - ^5°) 

1.20 

(© = 0°) 

0.309 

(© = ^5°) 

0.275 

(© - 0°) 
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From the left hand side of this table, it can be seen that for long plates 
(a = 0) the layers should be oriented so as to maximize Din (the same conclusion 
indicated previously).  From the right hand side of this table, it can be seen 
that for square plates (a = l) the optimum orientation tends to be one which 
maximizes D12 + 2D66' although the difference between the values in the first 
line, O.287 and 0.276, is within the accuracy to be expected of the perturbation 
method of solution, (using orthotropic plate theory, which is applicable in this 
case, it can be shown that the value O.287 should be O.278). 

Interpreting these results in terns of the angle of orientation, it appears 
that when Cn is greater than C22 + 2C66 'the an6le of orientation of each layer 
should be zero. On the other hand, when C12  + ^66  is greater than C11, it appears 
that for long plates the angle of orientation should be ^5 degrees (for C^ « C22)* 
whereas for square plates the angle of orientation should be zero. The aspect 
ratio for which the optimum angle of orientation switches from ^5 degrees to 0 
degrees may be deteimined by setting Eq (9'0) equal to Eq (9'9)'  Such a computa- 
tion for the material constants indicated in the second line of the above table 
gives an aspect ratio of 0. U5.  However, the accuracy of such a computation is 
somewhat questionable because of the approximate nature of the method of solution. 
The results may be checked by more accurate methods of solution (a refined 
perturbation method, orthotropic plate theory, or anisotropic plate theory), 
since only special orientations, for which these methods are applicable, need to 
be considered. 

For the case of a rectangular plate simply supported on two opposite edges 
and clamped on the other two edges, a study of optimum orientations similar to 
that given above could be made.  The conclusion that the optimum arrangement of 
the layers is one which is symmetrical with respect to the middle surface of the 
plate would be found to apply in this case also.  Furthermore, the solution can 
be shown to reduce to be similar in form to that for long rectangular plates when 
a = 0. However, it can be seen from the solution given in Section 8 that it will 
require extensive numerical calculations in order to arrive at specific conclusions 
regarding the optimum orientations for particular aspect ratios. 

EFFECT OF THE NUMBER OF LAYERS FOR A GIVEN TOTAL THICKNESS 

As indicated in the previous discussion, for many cases the deflection is 
minimized by orienting all of the layers in one direction.  In these cases, if 
the effect of the glue layers is neglected and if the layers are all of the same 
material, there will be no effect of the number of layers.  If the effect of the 
glue layers is considered, there will be a slight increase in the deflection as 
the number of layers increases. 
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xART III:  DETERMINATION OF MATERIAL PROPERTIES, FRACTURE CRITERIA 

INTROEUCTION 

This part of the report contains a section describing a possible procedure 
which can be followed to determine the elastic properties of an individual 
orthotropic lamina. Such properties are necessary for use in the plate and shell 
theory developed in Part I. The final section presents a brief description and 
the results of a limited number of uniaxial crack propagation tests of laminated 
foil type laminates. 
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10.  DETERMINATION OP ELASTIC OOEFFICIENTS OF IMDIVIDUAL LAMINAS 

As described In Part I, Section 1,  four Independent elastic coefficients 
are required to specify the stress-strain relations for an orthotropic lamina. 
These are conveniently taken to be tensile moduli of elasticity E^ and Ej, shear 
modulus of elasticity Gjyp and either value of Foisson's Ratio ^LT or J^TL. 
Since it appears to be difficult to measure the shear modulus of foil directly, 
an indirect method must be employed. One possible approach is to perfozm tensile 
stress-strain tests of a foil loaded unlaxlally first in the L direction, then 
the T direction, and finally in one other direction (say k5  degrees). If the first 
two tests EL, Ely and 3^LT or ^TL can be measured, the value of Grm can be calcu- 
lated from the third test. The  details of this procedure follow. 

Following the steps outlined in Part I, Section 1, it is possible to write 
strain-stress equations for an orthotropic lamina referred to arbitrary axes 
x, y. Eq (l. 2) then takes the more general form 

xy 

Sll 

12 

S16 

512 S16 

• 
a 

X 

s22 ^26 0 
y 

*26 ^66 xy 

(10.1) 

The relationships between the S^j and S^j and the angle 0 are given by 

S1;L ■ S  cos 9 + (23^ + Sgg) sin2 9  cos2 6 + S22 sin 0 

S12 " S12  (cos e + sin e) + (Sii + S22 ' a*£)  sin2 e cos2 e 366; 
(10.2) 

S22 " S22 C08 e + ^2S12 + S66^ Sin2 e COs2 e + Sll Sin e 

S66 • S^ (cos 9 + sin 9) + 2(23^ + 2S22 - ^3^ - S^)  sin2 9 cos2 9 

'16 (23 11 23 12 S^-) C08J 9 sin 9 - (.2.S00  - 2S,0  - S/^-) cos 9 sin"* 9 '66 '22 12 W 

D26 (23^ - 23no - 3^) cos 9 sin3  9 - (2S00 - 2S10 - S^) cos
J 9 sin 9 

The constants S^ and Sop  can be obtained from tension tests with 9 ■ 0° 
and 90° respectively, since 0^ becomes: 

for 9=0° 

11 11 (10.3) 

8 » 0° 
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and for © « 90° 

S, 11 22 
(lOA) 

ö - k50 

The remaining constants to be evaluated are S22 and Sgg; however, the only value 
which can be obtained directly_by tension tests is the value (23^ + Sgg). If 
6 " kj0  in the expression for Sn, then 

(2S12 + ^ = l^S 11 (s11 + s22) 
(10.5) 

^5° 

To obtain Sgg, S^o must be experimentally measured. This involves the 
measurement of PoissonTs Ratio. A possible procedure would involve meansuring 

LT and «^TL» from which 

2S12 = S12 + S21 »T    EL J 
(10.6) 

Substituting Eq (10.6) and Eq. (l. 3) into Eq (10.5) gives 

S66 = I ̂
5C -[V^]*R^1 (10.7) 

In this way the required elastic coefficients may be determined. 

Preliminary tensile tests on 1100 - H19 aluminum foil of 0.0035 inch thickness 
indicate that mechanical property values can be obtained as described above. To 
obtain complete information, one must conduct tension tests in the longitudinal, 
transverse and ^5 degrees directions from which moduli of elasticity E^, E^, 
and EJ+5 degrees as wel1 as Poisson's Ratios "V iß and 3/^ can be determined. 
The photogrld method which has been successfully applied to a number of deformation 
problems in metal sheets can be applied to the problem of determining the fore- 
going parameters. 
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11,  CRACK PROPAGATION IN ALUKIKUM FOIL LAMINATES * 

Crack propegation tests of 4 x 10 inch specimens load in uniaxial tension vas 
perfonred to study the fracture characteristics of foil-type laminates.  The material 
used for making the laminated specimens was 1100 H-IP aluminum foil, 0.0037 inch 
thick. The ultimate tensile strength, 0.2  per cent tensile yield strength and 
elastic modulus were obtained from 1x4 inch specimens tested on an lustron 
(Model TT-BL) tensile testing machine. The results of the tests are shown in 
Table k.    Loading in the grain direction, across it as well as at U5 degrees to 
the grain direction of the foil, was done to determine the anisotropy of the 
aluainun foil. 

The laminated specimens were made from k  x 10 inch sheets of 1100 H-19 
aluminum foil bonded with epoxy resin TV.-kJ.        Measurements of the glue-line 
thicknesses showed that they were between 0.00004 to 0.00016 inch; these glue lines 
were achieved by applying a 3:2 thinner to epoxy resin mixture with a special spray 
gun.  A typical specimen configuration is shown in Figure 1, and as can be seen, 
the initial crack was made by drilling a 1/6-inch hole and sawing a O.OOo inch 
slot of desired length through the entire thickness of the laminated specimens. 
Two, four, six, and ten-ply laminated sheets with the foil grain direction both 
parallel and perpendicular to the direction of the applied tensile load was 
tested. The specimens having initial crack lengths x0 of 0.5, 0.6, 0.6, and 1.0 
inches were tested in a Tate-Baldwin 60,000 pound tensile testing machine. A 
scale of 0.01 inch least count was used to measure crack extension during the slow 
load application until unstable crack lengths, i.e. sudden fracture, occurred. 

The experimental results are summarized in Table 5 and are plotted in Figures 
2, 3, 4, and 5 for 2-, h-,  6-, and 10-ply laminated specimens respectively. The 
plots of gross area stress vs. crack length show the crack initiation and failure 
lines for specimens of varying crack length.  During the course of the experiments, 
it vas observed that upon reaching maximum load a brief discontinuous crack growth 
took place without the usual load drop experienced in tests of monolithic specimens. 
Although brief in nature, this critical propagation characteristic illustrates the 
temporary ability of the laminate to arrest propagation until loads beyond the 
maximum critical load are applied.  In monolithic specimens, the crack extension 
after critical conditions are reached at loads below the maximum load. Both the 
monolithic sheets and foil laminates failed after formation of deep-necked bands 
in the plane of the sheet. The bands in the monolithic sheet specimens formed 
at 45 degrees to the applied tensile load, the bands in the laminate specimens 
were not as deep and formed on a fracture plane normal to the applied load. The 
lesser necking of the laminates in the fracture region means that reduction of 
cross sectional area is less than in monolithic sheets and consequently the load 
drop is also reduced. The values of net area initiation and fracture stress 
shown in Table k  show that crack propagation initiates at a stress far below 
(less than 60 per cent) the ultimate strength of the material. The net area 

This section was prepared by J. Frisch, Associate Professor of Mechanical 
Engineering, University of California, Berkeley. The work reported formed part 
of a Master of Science Thesis in Mechanical Engineering, by C. D. Mote, Jr., 
June, i960. 

Bloomingdale Ruber Company, Aberdeen, Maryland. 
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stress approaches the ultimate strength when the critical crack length is reached. 

Figures 6a and 6b show plots of final crack length as a function of the 
number of foils in the laminate.  The ability of 10-ply specimens to withstand 
longer final crack length, for particular initial crack length, than 2-, ^4--, and 
6-ply laminates is illustrated and can be directly correlated to the 10-ply 
laminate's greater load carrying capacity as shown in Table h.    However, direct 
comparison between 2- and 10-ply specimens should be done only with consideration 
of the more pronounced buckling, i.e., lower fracture strength, of the 2-ply 
specimens. The linear relationship between final and initial crack length for 
different laminates is shown in Figures 7a and 7b for with-grain and cross-grain 
loading conditions. 

Gross area initial stress and maximum gross area stress as functions of 
initial crack length are shown in Figures 3 and 9,   respectively. These data have 
been replotted on log-log coordinates in Figures 10 and 11 to test the theoretical 
relationship that the maximum gross area stress will vary inversely with the square 
root of the initial crack length. Figures 11a and lib show that curves of slope 
0.5 can be fitted to the experimental data of each specimen group and the power 
relationships are tabulated in Table 5- However, a similar attempt to relate the 
gross area initiation stress to initial cracklength, shown in Figures 10a and 10b, 
gives no general relationship as indicated in Table 5, where the exponents vary 
from 0.147 to O.663. The gross area crack initiation stresses and the maximum 
gross area stresses as functions of final crack length xf before sudden fracture 
are plotted in Figures 12 and 13. Since the final crack length is related to the 
initial one as shown in Figure 7> the resultant decrease in strength with final 
crack length as shown in Figures 12 and 13 follows the patterns of the similar 
plots with respect to the initial crack length. 

Of particular interest is the Griffith-Irwin (26) fracture criterion dW/dA, 
the dissipation rate of plastic work during fracture, shown as a function of initial 
crack length in Figures lha. and lUb. It can be observed that the values of dW/dA 
remain relatively constant for each laminated specimen group. The 6- and 10-ply 
specimens show a substantially greater value of dW/dA than do the 2- and 4-ply 
specimens. Since higher dissipation rates are associated with slower crack pro- 
pagation rates before sudden fracture, it may be concluded that additional foil 
layers would be beneficial. However, as shown in Figure lha.  the dissipation rate 
would be increased only slightly. The calculated values of dW/dA for each specimen 
and the average values for each specimen group are shown in Table 5. Ihese 
calculated values incorporate the correction for the ratio of initial crack length 
to specimen width. It is noteworthy that the average value of dM/dA for any 
specimen group when substituted in the Griffith-Irwin equation for maximum gross 
area stress will yield essentially the same constant shown in Table 5 for the 
empirical power function between maximum gross area stress and initial crack 
length. 

For example, the empirical equation, as shown in Table 5, for 2-ply laminates 
loaded in the cross-grain direction is 

'max = 13-0 X0 "
0*475 (ksi) max       o 
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The average value of dW/dA = 30.6 together vith an elastic modulus of 10' psi 
when substituted in the Griffith-Irvin equation gives 

nax '    o 
-O.50O (ksi) 

vhich is sufficiently close to pemit failure predictions based on dissipation 
rate values. 
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Table k 

Material Properties of 1100 E-19 Aluminum Foil Sheets 

Ultimate Tensile  0.2^ Tensile   Modulus of 
Strength     Yield Strength  Elasticity 

ksi ksi .  ,-_6 
psi x 10 

Tensile Load with 
Grain Direction of Foil 31-10 28.69 9.67 

(vith grain) 

Tensile load at ^5 ^.33 25.60 9-15 
to Gram Direction of Foil 

Tensile Load at 90° 
to Grain Direction of Foil 23.50 26.10 9.33 

(cross grain) 
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y^'DRILL, 12 HOLES 

WITH GRAIN 

0.008" JEWELERS 
SAW CUT 

-g- DRILL 

CROSS GRAIN 

Figure 1.   Aluminum Foil Laminate Specimen 
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Figure 6b.   Final Crack Length vs Number of Ply in 1100 H-19 
Aluminum Foil Laminates 
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Figure 7a.   Final Crack Length vs Initial Crack Length in 

1100 H-19 Aluminum Foil Laminates 
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1100 H-19   ALUMINUM   FOIL   LAMINATES 
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